Pages: 15 - 24
Abstract:
Wyniki badań klinicznych mogą tworzyć wielowymiarowe szeregi czasowe, które opisują zmiany w czasie istotnych parametrów opisujących stan zdrowia i kondycję pacjenta. Analiza tego typu danych polega na wyodrębnieniu typowych przebiegów trajektorii w procesie analizy skupień. Klasteryzacja szeregów medycznych wiąże się z transformacją danych wejściowych: regularyzacją szeregu czasowego, uzupełnieniem brakujących danych, standaryzacją zmiennych. W dalszej kolejności należy dobrać liczbę skupień oraz wykonać grupowanie metodą k-średnich, DTW, PDC lub inną. Te algorytmy są dostępne w otwartych środowiskach obliczeń statystycznych, jednak aby ułatwić analitykom ich zastosowanie, został zbudowany pakiet medclust, który dostarcza wysokopoziomowych procedur, domyślnie sparametryzowanych do wyszukiwania skupień.
Keywords
Full article:
str_15-24_kwartalnik_nr25_26.pdf