
Symulacja w Badaniach i Rozwoju
Vol. 9, No. 1-2/2018

 73

Joanna WIŚNIEWSKA
Wojskowa Akademia Techniczna

ul. gen. W. Urbanowicza 2, 00-908 Warszawa
E-mail: joanna.wisniewska@wat.edu.pl

Comparing quality of pseudo- and true-
random numbers obtained

from different sources

1 Introduction
Computer simulation often needs many random values to properly carry out the
computation. For many years these values were delivered by Pseudo Random Number
Generators (PRNGs). The practice made PRNGs [1, 3] useful tools: easy to implement,
quick, producing numbers which does not seem to be pseudorandom. Advancements in
quantum physics and quantum computing, however, may focus our attention on the
problem of random and pseudorandom values. It is a fact that the quantum effects are
sources of true random values and the availability of True Random Number Generators
(TRNGs) increased lately (especially because of the prices). The second issue is
simulating the behavior of a quantum system which seems to be a bit self-contradictory
without TRNGs. Of course, we can always use built-in functions like RdRand which
appeared in 2012 in Intel processors. The problem is that we should be aware of what
the high quality of the random/pseudorandom numbers is.

In this work the sources of values, which may be used e.g. during computer simulation,
are presented. Then the problem of testing values obtained from the generators is
addressed. Finally, the results of some tests are presented.

2 Sources of values
At present, the numbers that are needed during the simulation may come from at least
three different types of sources: PRNG, TRNG and Digital Random Number Generator
(DRNG).

PRNGs are just algorithms which produce some values. The results produced by
PRNGs are perfectly predictable. Because for many years there was no cheap
alternative to produce needed numbers, many techniques were developed to obtain
a very high quality of the generated values. The first factor is a seed. The generator’s
seed is a number (or numbers) which is the initial value for the algorithm producing
numbers. If we run the algorithm with the same seed we always obtain the same
pseudorandom numbers. To make an impression that the numbers are really random the
PRNG may extract the current time from the system clock and use it as the seed. This
approach does not change the fact that if someone knew the time when algorithm
started, he could calculate what numbers were generated. The second issue is
a periodicity of the generator. Each PRNG is bounded by the number of values that pose
unrepeatable series. Nowadays, we can use PRNGs that guarantee high quality

Joanna WIŚNIEWSKA

74

numbers, e.g. MT19937 (period 4,3 x 106001), MRG32K3A (period 3,1 x 1057),
LFSR113 (period 1034), GM61 (period 5,3 x 1036).

TRNGs are physical generators which use a quantum physics phenomenon to obtain
truly random values. We can imagine the whole procedure as a measurement of a single
photon’s state. Two basic states of one photon may be expressed as a vertical or
horizontal polarization – just like a single bit which may hold a value 0 or 1. Quantum
states have this advantage that except of being equal to one of the basic states, they may
be a mixture of basic states. Using Dirac notation, a single photon state we can express
as |uv〉:

|uv〉 = 6�|u0〉 + 6�|u1〉	. (1)

Let us assume that |u0〉 corresponds to the vertical polarization and |u1〉 to the horizontal
polarization. Complex numbers 6� and 6�, called amplitudes, describe the probability if
the state after the measurement is, respectively, |u0〉 or |u1〉, therefore: |6�|� + |6�|� = 1.

The generator produces quantum state:

yuv〉 = �
√�
y u0〉 + �

√�
|u1〉	. (2)

As we can see both basic states are equally probable. Now, the state has to be measured.
For example, the single photon, described as in (2), meets a vertical polarizer. If the
photon goes through the polarizer then it is assumed that its state is |u0〉. If the polarizer
stops, the photon its state is |u1〉. This simplified procedure shows how the TRNG
produces a random number. Of course, if the 32-bit numbers are needed the procedure
has to repeated 32 times to produce one number.

According to Moore’s law the number of transistors in a dense integrated circuit
doubles about every two years. About year 2010 engineers constructing and building
processors noticed that sizes of transistors became so small that the stability of
integrated circuits work is threaded by some quantum effects. In 2011 Intel used this
fact and produced line of processors, called Ivy Bridge (22 nm die shrink), which
allowed to generate true random values. A part of the circuit is not isolated from
the external influence (mainly temperature changes), therefore the movements of
holes/electrons are unpredictable there. When the measurement is made we randomly
obtain value 0 or 1. This type of generator is called DRNG. Intel DRNG [2] hardware
implementation offers two functions: RdRand for generating numbers influenced by
the external influence and RdSeed which generates random numbers similarly to
RdRand but uses them as seeds for PRNGs.

3 Batteries of tests for numbers generators
Many years of using PRNGs caused the need of testing the generators quality. The first
battery of test, called Diehard, was proposed by George Marsaglia in 1995 [5]. In 2001
National Institute of Standard and Technology (Gaithersburg, Maryland, USA)
published NIST battery which was regularly updated (last version was released in 2010).
In 2003 Robert G. Brown proposed Dieharder battery which was an extended version
of Diehard. In 2007 Pierre L’Ecuyer and Richard Simard prepared a package TestU01
[4] which was composed of eight batteries of tests: SmallCrush, Crush, BigCrush,
Rabbit, Alphabit, pseudoDiehard, NIST and FIPS_140_2 [7].

Comparing quality of pseudo- and true-random numbers
obtained from different sources

 75

In next section of this work results of tests for some pseudo- and true-random numbers
will be presented. A battery chosen for this task is Dieharder, because the software is
still developed and updated. It is very easy to install and use on Linux-like operating
systems.

The Dieharder battery contains the following tests from Marsaglia’s Diehard:

• Birthday spacing – { days from O-day year are generated (O ≥ 2�|).
The spacings between drawed days should be asymptotically exponentially
distributed.

• Overlapping permutations – permutations of five consecutive numbers are
generated. This 120 series should occur in an analyzed set with an equal
probability.

• Binary rank matrices – 40000 binary matrices sized 32 × 32 are generated.
The rank of every matrix is calculated. Matrices with the rank greater than 28
are counted. Numbers of these matrices should be consistent with chi-squared
test.

• Monkey tests – four tests (Bitstream, Overlapping Pairs Sparse Occupancy,
Overlapping Quadruples Sparse Occupancy, DNA Test) based on the infinite
monkey theorem saying that if there is enough time and monkeys equipped
with typewriters they are able write all Shakespeare’s plays.

• Count the 1s – the generated series are divided to O-element sequences.
In every sequence the number of 1s is counted. The sequences are converted
to letters, e.g. if there is zero 1s letter A is producted, for two 1s letter B, etc.
The distribution of letters in the series is analyzed.

• Parking lot test – in 2-dimentional array 100 × 100. There are 12000 numbers
generated (from range 1 to 10000). The number of values generated only once
should follow the normal distribution.

• Random spheres tests – in 2- or 3-dimentional array (1000 × 1000 or 1000 ×
1000 × 1000) 8000 or 4000, respectively, cells are randomly chosen. These
cells become centers of the spheres with maximum radiuses not overlapping
their neighbors. The distribution for the number of smallest spheres should be
exponential.

• Squeeze test – the number 231 is multiplied by random floats from range (0,1)
until the result is equal 1. The test is performed 100000 times. The number
of generated floats should follow a certain distribution.

• Overlapping sums – long sequences of floats from range (0,1) are generated.
Every 100 consecutive floats are added. The sums should be normally
distributed.

• Runs tests – long sequences of floats from range (0,1) are generated.
The length of subseries of ascending and descending values are counted.
The obtained sums should follow a certain distribution.

• Craps tests – 200000 games of craps are simulated. The numbers of wins
and throws per game should follow a certain distribution.

The tests added by Robert G. Brown are:

Joanna WIŚNIEWSKA

76

• Marsaglia-Tsang GCD – 107 32-bit unsigned integers are generated. For every
pair of the numbers their greatest common divisor (GCD) is calculated with
use of the Euclid’s Method. The GCDs and number of algorithm’s steps should
follow a certain distribution.

• STS Monobit test – counts the 1s in a long sequence of 32-bit unsigned
integers. The sum is compared to the expected value.

• STS Runs – the binary series are generated. Counted are “0 run” and “1 run”
which should follow a certain distribution. “0 run” begins with 10 and ends
with 01. “1 run” begins with 01 and ends with 10.

• STS Serial tests – for the parameter O = 1,16������, 2� O-bit sequences are
generated. The number of the same sequences should occur with the same
probability.

• STS Serial tests with overlapping – tests similar to above, but additionally
a cyclic wrap is realized on the analyzed series.

• RGB Bit Distribution tests – O-element tuples of 0s and 1s are generated where
O = 1,12������. The numbers of the same elements on the same positions should be
consistent with the chi-squared test.

• RGB Minimum Distance Tests – four hybrid tests, made as the generalizations
of Random Spheres and Minimum Distance tests (Minimum Distance test is
originally Diehard test in which distances between 8000 points in 2-dimen-
sional array (10000 × 10000) should follow exponential distribution).

• RGB Permutations tests – O! permutations of O numbers are generated
(O = 2,5����). In the tested series all permutations should occur the same number
of times.

• RGB Lagged Sum tests – the generated numbers are added with skipping of O
elements (O = 0,32������). The average value of the summed numbers should fit
to the average values of numbers from the generator’s range.

• RGB Kolmogorov-Smirnov test – the generated values should follow the
Anderson-Darling or Kuiper Kolmogorov-Smirnov test.

• DAB Byte Distribution test – there are 256 × O counters, O independent bytes
are extracted from each of � consecutive words. The counters are increased if
the bytes repeat in the words. Values of counters should be consistent with
the chi-squared test.

• DAB DCT Frequency Analysis test – the Discrete Cosine Transform (DCT)
is performed on the output of the number generator. The finite sequences
of the data points, in terms of a sum of cosine functions oscillating at different
frequencies, should be consistent with the chi-squared test.

• DAB Fill Tree test – a binary tree of the fixed depth is filled with the words
from the generator. When a word cannot be inserted into the tree, the counter
of words in tree is saved – these values should be consistent with the chi-
squared test.

• DAB Fill Tree 2 test – similar to previous test, but instead of the words
the trees are filled with the bits.

Comparing quality of pseudo- and true-random numbers
obtained from different sources

 77

• DAB Monobit 2 test – a block-monobit test which counts the 1s in blocks of
generated O-bit unsigned numbers. The size of the block is 2 where � = 0, O�����.
The sum is compared to the expected value.

4 Tests results
Five different generators were tested with use of the Dieharder battery. For each
generator the tests were run ten times. The total number of tests in the battery is 115.
One single test may be evaluated as passed, weak or failed. If a single test, for the same
generator, was ended ten times with a result “passed” then it is not shown at a graph. If
there is a group of tests appearing under one name, the name of the test is ended with
the number of subtests in brackets.

The first generator is PRNG termed as Mersenne Twister MT19937. It was elaborated
by Makoto Matsumoto and Takuji Nishimura and generates 32-bit words [6]. The
generator’s period is 4,3 x 106001, therefore it is a very popular PRNG. The tests results
are depicted in Fig. 1, the streams of numbers produced by MT19937 were directly
transmitted to the Dieharder software.

To show the difference between one high-quality PRNG and another much poorer,
the next tests were performed for the classic RAND generator used e.g. as a basic
random function in the C programming language. The period of this generator is 232.
The tests results are depicted in Figure 2 and streams of numbers were also directly
transmitted to the Dieharder battery.

The third generator taken into account in this work is a TRNG. Unfortunately, there was
no opportunity to have a direct access to this kind of device and the generated numbers
could not be streamed to the Dieharder battery. However, the Dieharder software can
test the files of numbers. According to the manual of Dieharder there should be at least
2.5 million 32-bit unsigned integers in a file to ascertain correct results of tests. Ten
such files utilizing a TRNG, owned by Australian National University (ANU), were
prepared. The TRNG streams the numbers and using ANU’s website or special package
for Python, the mentioned values can be saved into the files. The results of the test for
these true random numbers are presented in Figure 3.

Joanna WIŚNIEWSKA

78

Rys. 1. Wyniki testów dla MT19937

Fig. 1. The tests results for the MT19937

Rys. 2. Wyniki testów dla funkcji Rand

Fig. 2. The tests results for the Rand function

The fourth generator is Intel DRNG working on Windows 7 operating system. Beca
the Dieharder software is dedicated for Linux
be generated on Windows-like system with use of RdRand() function, also ten files

Joanna WIŚNIEWSKA

MT19937

The tests results for the MT19937

la funkcji Rand

Fig. 2. The tests results for the Rand function

The fourth generator is Intel DRNG working on Windows 7 operating system. Because
software is dedicated for Linux-like operating systems and numbers must

like system with use of RdRand() function, also ten files

Comparing quality of pseudo

of values must be prepared (each 2.5 million of 32
for the Intel DRNG working on Windows 7 were run from these files. T
are depicted in Figure

Rys. 3. Wyniki testów dla TRNG

Fig. 3. The tests results

Rys. 4. Wyniki testów d

Fig. 4. The tests results

The last set of tests was performed for the RdRand() function on Linux Fedora 28.
The tests results are depicted in Fig. 5 and the generated numbers were directly
streamed to the Dieharder

Comparing quality of pseudo- and true-random numbers
obtained from different sources

values must be prepared (each 2.5 million of 32-bit unsigned integers).
Intel DRNG working on Windows 7 were run from these files. The tests results

Figure 4.

Rys. 3. Wyniki testów dla TRNG

The tests results for the TRNG

Rys. 4. Wyniki testów dla RdRand w systemie Windows 7

results for the RdRand function on Windows 7

The last set of tests was performed for the RdRand() function on Linux Fedora 28.
tests results are depicted in Fig. 5 and the generated numbers were directly

Dieharder battery.

79

bit unsigned integers). The tests
tests results

The last set of tests was performed for the RdRand() function on Linux Fedora 28.
tests results are depicted in Fig. 5 and the generated numbers were directly

Joanna WIŚNIEWSKA

80

5 Summary
In this section the obtained results for five generators, with use of Dieharder battery
of tests, will be commented. Additionally, it sounds reasonable to take into
consideration also a correlation between the results of the tests for every generator.

Comparing results for the PRNGs: MT19937 and RAND; we can see that RAND failed
in a greater number of the tests. In contrast to RAND, MT19937 did not obtain any
“failed” mark. For both aforementioned generators the correlation between tests is very
high. This means there are no significant differences between results of the tests, e.g.
most of all tests for MT19937 were passed, RAND failed all monkey tests.

The results for the TRNG are not prefect what may be surprising. It obtained “weak”
and “failed” marks in more tests than simple RAND generator. What can be observed
for this generator is that there are some tests results which are not correlated:
overlapping permutations were passed 4 times, failed twice and the mark “weak” was
reached 4 times; squeeze test was passed 4 times, failed 3 times and the mark “weak”
was obtained 3 times; in two craps tests there were 7 marks “passed”, 8 marks “weak”
and 5 marks “failed”.

Taking into account the results for DRNGs, we can observe that the function RdRand
differs a lot according to its implementation for the operating system. RdRand for
Fedora behaves similarly to MT19937 and RdRand for Windows like the TRNG.
RdRand on Fedora did not obtain any mark “failed” and the correlation between tests
results is very high. RdRand on Windows has more varied marks and the correlation
between tests results is lower, especially for: two binary rank matrices tests (6 times
“passed”, 11 times “weak”, 3 times “failed”), four monkey tests (24 times “passed”, 8
times “weak”, 8 times “failed”), two craps tests (3 times “passed”, 6 times “weak”, 11
times “failed”), 32 STS serial tests (221 times “passed”, 84 times “weak”, 15 times
“failed”), four RGB minimum distance tests (7 times “passed”, 15 times “weak”, 18
times “failed”), four RGB permutations tests (12 times “passed”, 16 times “weak”, 12
times “failed”) and RGB Kolmogorov-Smirnov test (5 times “passed”, 4 times “weak”,
1 time “failed”).

Comparing quality of pseudo

Rys. 5. Wyniki testów d

Fig. 5. The tests results for the RdRand fu

Drawing conclusion from the above results
be a benchmark in evaluation of numbers’ quality. We can see that according to
the Dieharder battery the TRNG is not a perfect generator. Anyway, if the
randomness is considered
may be: 54, 78, 300, 1, 83589 or 1, 1, 1, 1, 1. This was the reason to introduce the
correlation between tests results: in four tests of the TRNG the correlation was low
may indicate true randomness.
obtains better characteristic that this implemented on Fedora.

The obtained results point some directions in evaluation of random numbers
but to gain convincing results much more tests should be performed.

Bibliography
1. Gentle J.E.: Random Number Generation and Monte Carlo Methods

edition). Springer-
2. Hamburg M., Kocher P., Marson M.E.:

Random Number Generator

3. Herrero-Collantes M.:
[quant-ph] 2016

4. L’Ecuyer P.: Good parameters and implementations for combined multiple recursive
random number generators

5. Marsaglia G.: A Current View of Random Number Generators,
and Statistics: Proceedings of the 16th Symposium on the Interface
Publishers B.V., Amsterdam, 1985

6. Matsumoto M., Nishimura T.: Mersenne twister: a 623
equidistributed uniform pseudo
on Modeling and Computer Simulation

Comparing quality of pseudo- and true-random numbers
obtained from different sources

Rys. 5. Wyniki testów dla RdRand w systemie Fedora 28

Fig. 5. The tests results for the RdRand function on Fedora 28

Drawing conclusion from the above results seems difficult. The TRNG was supposed to
in evaluation of numbers’ quality. We can see that according to

battery the TRNG is not a perfect generator. Anyway, if the
randomness is considered, we should remember that random sequence of five values
may be: 54, 78, 300, 1, 83589 or 1, 1, 1, 1, 1. This was the reason to introduce the
correlation between tests results: in four tests of the TRNG the correlation was low
may indicate true randomness. If the correlation is concerned, the DRNG for Windows
obtains better characteristic that this implemented on Fedora.

The obtained results point some directions in evaluation of random numbers
ing results much more tests should be performed.

Random Number Generation and Monte Carlo Methods (Second
-Verlag New York, 2003

Hamburg M., Kocher P., Marson M.E.: Analysis of Intel’s Ivy Brigde Digital
Number Generator. Raport Crytpography Research Inc., 2012

Collantes M.: Quantum Random Number Generators. arXiv: 1604.03304v2

L’Ecuyer P.: Good parameters and implementations for combined multiple recursive
random number generators. Operations Research, 47(1): pp. 159-164, 1999
Marsaglia G.: A Current View of Random Number Generators, Computing Science

Proceedings of the 16th Symposium on the Interface. Elsevier Science
Publishers B.V., Amsterdam, 1985

Nishimura T.: Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions

Modeling and Computer Simulation (TOMACS), 8(1): pp. 3-30, New York 1998

81

ms difficult. The TRNG was supposed to
in evaluation of numbers’ quality. We can see that according to

battery the TRNG is not a perfect generator. Anyway, if the true
we should remember that random sequence of five values

may be: 54, 78, 300, 1, 83589 or 1, 1, 1, 1, 1. This was the reason to introduce the
correlation between tests results: in four tests of the TRNG the correlation was low what

for Windows

The obtained results point some directions in evaluation of random numbers quality,

(Second

Analysis of Intel’s Ivy Brigde Digital

. arXiv: 1604.03304v2

L’Ecuyer P.: Good parameters and implementations for combined multiple recursive
164, 1999

Computing Science
. Elsevier Science

ACM Transactions
30, New York 1998

Joanna WIŚNIEWSKA

82

7. Rukhin A., Soto J., Nechvatal J., Smid M., Barker E., Leigh S., Levenson M.,
Vangel M., Banks D., Heckert A., Dray J., Vo S.: A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applications.
Raport NIST, 2010

Porównanie jakości liczb pseudolosowych
i losowych pozyskanych z różnych źródeł

Streszczenie
Praca dotyczy problemu generowania liczb pseudolosowych. Wartości liczbowe
wymagane podczas symulacji mogą być generowane przez: pseudolosowe generatory
liczb, rzeczywiste generatory liczb losowych lub cyfrowe generatory liczb
losowych. W artykule opisano zestaw testów, które pomagają w ocenie jakości
uzyskiwanych wartości liczbowych. Dla pięciu różnych generatorów uruchomiono
zestaw testów, a w pracy zamieszczono wyniki tych testów w postaci wykresów.

Słowa kluczowe: generator liczb (pseudo)losowych, jakość generatorów, symulacja

Summary
The manuscript refers to the problem of the pseudorandom numbers generation.
Numbers needed during a simulation may be generated by pseudorandom numbers
generators but also by true random numbers generators or digital random number
generators. In this work some tests were described which help to evaluate quality
of random values. For five generators, the batteries of tests were run and the manuscript
contains results of these tests in a form of graphs.

Keywords: (pseudo)random numbers generators, quality of random values, simulation

Symulacja w Badaniach i Rozwoju
Vol. 9, No. 1-2/2018

 83

