Anna DEMIANIUK, Tomasz Janusz TELESZEWSKI

Politechnika Białostocka, WBiIŚ, ul. Wiejska 45E, 15-351 Białystok E-mail: a.b.demianiuk@10g.pl, t.teleszewski@pb.edu.pl

Modelowanie konwekcji wymuszonej w kolektorach słonecznych metodą elementów brzegowych

Wstęp

1

W płaskich kolektorach słonecznych oraz w kolektorach z reflektorami wykorzystuje się przejmowanie ciepła przez przewody prostoliniowe [1]. Przepływ newtonowskiego płynu rzeczywistego jest opisany układem równań różniczkowych wynikających z zasad: zachowania masy (1), momentu pędu (2) i energii (3) [2]:

$$div \mathbf{u} = 0 , \qquad (1)$$

$$\frac{D\mathbf{u}}{Dt} - \nu \nabla^2 \mathbf{u} = \overline{\wp} \quad ; \quad \overline{\wp} = -\frac{1}{\rho} \nabla p - \mathbf{g} \quad , \tag{2}$$

$$\frac{DT}{Dt} = \frac{\lambda}{\rho c_p} \nabla^2 T + \frac{v}{c_p} \tau_{ij} \frac{\partial u_i}{\partial x_i}, \qquad (3)$$

gdzie: **u** oznacza prędkość przepływu, *p* ciśnienie, **g** -wektor przyśpieszenia ziemskiego, ρ jest gęstością cieczy, μ oraz $v = \mu/\rho$, oznacza odpowiednio dynamiczny i kinematyczny współczynnik lepkości, c_p jest ciepłem właściwym, λ jest współczynnikiem przewodzenia ciepła, natomiast τ_{ij} jest tensorem naprężeń lepkich.

W praktyce w przewodach układu roboczego kolektorów słonecznych przepływ czynnika jest laminarny. Analizę zagadnień dla przepływu laminarnego w układach wymiany ciepła kolektora płaskiego można znaleźć w wielu opracowaniach, dotyczących m.in. pracy płaskiego kolektora słonecznego w warunkach nieustalonej wymiany ciepła [3], rozkładu prędkości w przewodach kolektora o rurkach w układzie poziomym [4], jak również w kolektorach skupiających [5]. W przypadku stacjonarnego w pełni rozwiniętego laminarnego przepływu jednokierunkowego w przewodzie prostoosiowym równania (1-3) ulegają uproszczeniu (rys.1):

$$\frac{\partial u_z}{\partial z} = 0 , \qquad (4)$$

$$\left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2}\right) = -\Delta P \quad ; \quad \Delta P = \frac{-1}{\mu} \frac{\partial p}{\partial z} \quad ; \quad \frac{\partial p}{\partial x} = \frac{\partial p}{\partial y} = 0 , \tag{5}$$

Rys. 1. Szkic obrazujący zagadnienia brzegowe w przepływach przez przewody prostoliniowe

Fig. 1. A sketch to consideration of boundary conditions for a straight pipe flow

Po sformułowaniu zagadnienia opisanego przedstawionym wyżej układem równań różniczkowych, przy użyciu brzegowych równań całkowych opisujących pola prędkości przepływu w przewodach układu hydraulicznego i pola temperatury w strumieniu płynu, gęstość strumienia ciepła wewnątrz przewodu wyznacza się przez numeryczne różniczkowanie pola temperatury:

$$q_x = -\lambda \frac{\partial T}{\partial x}, \qquad (7a)$$

$$q_y = -\lambda \frac{\partial T}{\partial y}.$$
 (7b)

Linie przepływu ciepła (adiabaty) wyznacza się, całkując składowe strumienia ciepła zgodnie z zależnością:

$$d\Xi = q_x dy - q_y dx \,. \tag{8}$$

Na kanwie proponowanego wyżej algorytmu zrealizowano program obliczeniowy do rozwiązywania złożonych zagadnień obliczeniowych przepływu laminarnego z wymianą ciepła przez przewodzenie. W opracowaniu przedstawiono rozwiązanie zagadnienia walidacji algorytmu obliczeniowego i przykłady obliczeń układów przepływowych kolektorów słonecznych. W obliczeniach cieplnych przyjęto zerowy strumień ciepła między przewodem kolektora a izolacją oraz założono stałą temperaturę ścianki przewodu między ścianką przewodu a warstwą powietrza w kolektorze słonecznym.

230

2 Brzegowe równania całkowe wymiany ciepła w przepływie laminarnym przez przewody prostoosiowe w kolektorach słonecznych

W pierwszej kolejności wyznacza się pole prędkości w przekroju poprzecznym (Λ) przewodu prostoosiowego. Metoda elementów brzegowych wyznaczania pól prędkości w przewodach prostoosiowych została przedstawiona w publikacjach [6, 7], natomiast w przewodach kolektorów słonecznych w pracach [8, 9].

Zagadnienie brzegowe dla równania różniczkowego (6) formułuje się w postaci złożonego warunku brzegowego Dirichleta i Neumanna, zakładającego znane wartości temperatury $T_s(\mathbf{q})$ na części brzegu L_T i znane wartości strumienia ciepła $q_s(\mathbf{q})$ na części brzegu L_T i znane wartości strumienia ciepła $q_s(\mathbf{q})$ na części brzegu L_O oraz wyznaczone uprzednio pole prędkości Λ (rys.1):

$$-\chi(\mathbf{p})T(\mathbf{p}) + \int_{L_Q} T(\mathbf{q})H(\mathbf{p},\mathbf{q})dL_{\mathbf{q}} - \frac{1}{\lambda}\int_{L_T} q(\mathbf{q})G(\mathbf{p},\mathbf{q})dL_{\mathbf{q}} = -\frac{1}{\lambda}\int_{L_Q} q_s(\mathbf{q})G(\mathbf{p},\mathbf{q})dL_{\mathbf{q}} - \int_{L_T} T_s(\mathbf{q})H(\mathbf{p},\mathbf{q})dL_{\mathbf{q}} + \frac{\rho c_p}{\lambda}\Delta T_z \iint_{\Lambda} u(\mathbf{v})G(\mathbf{v},\mathbf{q})d\Lambda_{\mathbf{v}}$$
(9)
$$(\mathbf{p}), (\mathbf{q}) \in L; (\mathbf{v}) \in \Lambda,$$

gdzie: dla brzegu gładkiego $\chi(\mathbf{p}) = 1/2$.

$$G(\mathbf{p}, \mathbf{q}) = \frac{1}{2\pi} \ln \left(\frac{1}{r_{\mathbf{pq}}} \right) \quad ; \quad r_{\mathbf{pq}} = \left| \mathbf{p} - \mathbf{q} \right| \;, \tag{10a}$$

$$H(\mathbf{p},\mathbf{q}) = \frac{\partial G(\mathbf{p},\mathbf{q})}{\partial \mathbf{n}_{\mathbf{p}}} = \frac{1}{2\pi} \frac{\left(x_{\mathbf{q}} - x_{\mathbf{p}}\right)n^{x} + \left(y_{\mathbf{q}} - y_{\mathbf{p}}\right)n^{y}}{r_{\mathbf{pq}}^{2}} \quad .$$
(10b)

Po wyznaczeniu wartości temperatury $T(\mathbf{p})$ i strumienia ciepła $q(\mathbf{p})$, na brzegu obszaru w punktach $\mathbf{p} \equiv \mathbf{q}$, temperaturę w dowolnym punkcie ($\mathbf{v} \in \Lambda$) rozpatrywanego obszaru wyznacza się ze związku całkowego:

$$T(\mathbf{v}) = \int_{L} T(\mathbf{q}) H(\mathbf{v}, \mathbf{q}) dL_{\mathbf{q}} + \frac{1}{\lambda} \int_{L} q(\mathbf{q}) G(\mathbf{v}, \mathbf{q}) dL_{\mathbf{q}} - \frac{\rho c_{p}}{\lambda} \Delta T_{z} \iint_{\Lambda} u(\mathbf{v}) G(\mathbf{v}, \mathbf{w}) d\Lambda_{\mathbf{w}}$$
(11)

Średni strumień ciepła na brzegu L jest wyznaczany z zależności:

$$q_m = \frac{1}{L} \int_{L} q(\mathbf{q}) dL_{\mathbf{q}} \quad ; \quad (\mathbf{q}) \in L \quad .$$
(12)

Po uwzględnieniu zależności (7a, 7b) i (11) składowe strumienia ciepła wyznacza się z zależności [10]:

Anna DEMIANIUK, Tomasz Janusz TELESZEWSKI

$$q_{x}(\mathbf{v}) = \lambda \int_{L} T(\mathbf{q}) \left(\frac{\partial H(\mathbf{v}, \mathbf{q})}{\partial x} \right)_{\mathbf{v}} dL_{\mathbf{q}} - \int_{L} q(\mathbf{q}) \left(\frac{\partial G(\mathbf{v}, \mathbf{q})}{\partial x} \right)_{\mathbf{v}} dL_{\mathbf{q}} = -\rho c_{p} \Delta T_{z} \iint_{A} u(\mathbf{v}) \left(\frac{\partial G(\mathbf{v}, \mathbf{w})}{\partial x} \right)_{\mathbf{v}} dA_{\mathbf{w}}$$

$$q_{y}(\mathbf{v}) = \lambda \int_{L} T(\mathbf{q}) \left(\frac{\partial H(\mathbf{v}, \mathbf{q})}{\partial y} \right)_{\mathbf{v}} dL_{\mathbf{q}} - \int_{L} q(\mathbf{q}) \left(\frac{\partial G(\mathbf{v}, \mathbf{q})}{\partial y} \right)_{\mathbf{v}} dL_{\mathbf{q}} = -\rho c_{p} \Delta T_{z} \iint_{A} u(\mathbf{v}) \left(\frac{\partial G(\mathbf{v}, \mathbf{w})}{\partial y} \right)_{\mathbf{v}} dA_{\mathbf{w}}$$
(13a)
$$(13b)$$

3 Weryfikacja numerycznego modelu MEB

Weryfikację przedstawionego algorytmu wykonano, porównując rozwiązanie MEB ze znanym rozwiązaniem konwekcji wymuszonej w przewodach prostoosiowych z zadanymi ściankami adiabatycznymi [11]. Porównano wyznaczone liczby Nusselta dla zagadnienia przepływu przez kanał o przekroju kwadratowym, na obwodzie którego założono w pierwszym przypadku dwie równoległe ścianki izolowane i dwie ścianki ogrzewane (rys.2a) oraz w drugim przykładzie trzy ścianki o zerowym strumieniu ciepła i jedną ogrzewaną (rys. 2b).

- Rys. 2. Warunki brzegowe w przepływach przez przewód prostoliniowy o przekroju kwadratowym: a) dwie równoległe ścianki ogrzewane, b) jedna ścianka ogrzewana
- *Fig. 2. Sketch to consideration of boundary conditions for square duct flow: a) two parallel sides heated, b) one side heated*

Kryterialna liczba Nusselta definiowana jest zależnością [1]:

$$Nu = \frac{q_w D_h}{\lambda (T_w - T_m)} \quad ; \quad D_h = \frac{4\Lambda}{L} \quad ; \quad T_m = \frac{1}{\Lambda u_m} \int_{\Lambda} cT d\Lambda \quad , \tag{14}$$

gdzie: D_h jest średnicą hydrauliczną, L-obwodem przewodu, Λ – polem powierzchni przekroju poprzecznego przewodu, natomiast T_m – średnią masową temperaturą płynu.

W przypadku przepływów przez przewody prostoliniowe z zadanymi warunkami adiabatycznymi na ściankach wymiar charakterystyczny D_h jest zmodyfikowany poprzez zastąpienie obwodu L przekroju poprzecznego przewodu tzw. obwodem ogrzewanym L_h z wyłączeniem ścianek izolowanych [10,11]:

$$Nu^{*} = \frac{q_{w}D_{h}^{*}}{\lambda(T_{w} - T_{m})} \quad ; \quad D_{h}^{'} = \frac{4\Lambda}{L_{h}} .$$
 (14a)

W obliczeniach przy użyciu prezentowanej metody elementów brzegowych przyjęto brzeg złożony z 1000 elementów. Błąd rozwiązania metody elementów brzegowych dla liczby Nusselta wyznaczono z zależności:

$$\delta Nu'_{MEB} = \left| \frac{Nu'_{TEO} - Nu'_{MEB}}{Nu'_{TEO}} \right| *100\% , \qquad (15)$$

gdzie: Nu'_{MEB} jest to liczba Nusselta wyznaczona metodą elementów brzegowych, natomiast Nu'_{TEO} jest rozwiązaniem teoretycznym [10].

W tabeli 1 zestawiono błąd metody MEB dla prezentowanych przykładów. Przy zaokrągleniu wyniku do trzech miejsc po przecinku otrzymano zerowy błąd metody elementów brzegowych.

Tab. 1. Liczba Nussleta Nu' w prezentowanych przykładach w przepływach przez przewód prostoliniowy o przekroju kwadratowym - błąd rozwiązania MEB

Tab. 1.Nusselt number Nu' in laminar flow in a pipe witch square cross section - error analysis applied in BEM

Zagadnienie	Nu' [8]	Nu' MEB	Błąd
	-	-	%
Przekrój kwadratowy z dwiema równoległymi adiabatycznymi ściankami	4,095	4,095	0
Przekrój kwadratowy z trzema adiabatycznymi ściankami	2,686	2,686	0

4 Przykłady obliczeniowe. Symulacja pól temperatury i linii przepływu ciepła w kolektorze płaskim w układzie przewodów o kołowym przekroju poprzecznym

Poniżej przedstawiono przykład obliczeniowy symulacji przepływu ciepła wewnątrz okrągłych rur kolektora płaskiego w zależności od stopnia zagłębienia przewodów w izolacji. Budowa i przykładowe przekroje badanego kolektora zostały przedstawione na rysunkach 3a-c. Do obliczeń przyjęto parametry pracy kolektora: T_w =50°C, przepływ roztworu glikolu etylenowego (34%); μ =0,00254 Pa s; ρ =1051,0 kg/m³; λ =0,4897 W/(m·K); c_p =3170,0 J/(kg K); Re=200.

Symulacje wykonano w funkcji charakterystycznego wymiaru stosunku wysokości h zagłębienia przewodu w izolacji do średnicy przewodu D. Wyznaczone liczby Nusselta Nu i Nu' w funkcji h/D przybliżono funkcją wymierną:

Nu, Nu' =
$$\frac{a + bx + cx^2 + dx^3 + ex^4}{1 + fx + gx^2 + hx^3 + ix^4 + jx^5},$$
 (16)

gdzie: x=h/D, natomiast *a-j* są to współczynniki kształtu funkcji (16) przedstawione w tabeli 2.

Tab. 2. Współczynniki funkcji wymiernej (18)

Tab. 2. Rational coefficients appearing in eq. (18)

I. Nusselta	a	h	C	d	0
L.INUSSCIII	и	υ	ι	u	c
Nu	4,368135	100,939468	-84,003960	-141,859410	120,556941
Nu'	4,364232	357,307538	-802,709867	541,771220	-100,587500
L.Nusselta	f	g	h	i	j
Nu	26,034188	19,129437	18,684203	-172,632645	107,793746
Nu'	73,490710	-99,556060	-39,327400	83,425400	-19,024113

Modelowanie konwekcji wymuszonej w kolektorach słonecznych metodą elementów brzegowych

Rys. 3. Przekrój przez fragment kolektora słonecznego Fig. 3. Cross section of a cover part of flat-plate collector Na rysunku 4 wykreślono funkcję Nu=f(h/D) oraz Nu'=f(h/D).

Rys. 4. Funkcja liczby Nusselta w funkcji zagłębienia przewodów kołowych w izolacji kolektora Nu=f(h/D), Nu'=f(h/D)

Fig. 4. Nusselt function Nu=f(h/D), Nu'=f(h/D) in solar collector with circular pipe

Na rysunku 5a wykreślono izotachy przepływu roztworu glikolu etylenowego w rurce kolektora słonecznego, natomiast na rysunku 5b widok 3D pola prędkości.

Rys. 5. Pole prędkości w przewodzie kolektora słonecznego (Re=200): a) izotachy, b) widok 3D

- Fig. 5. Velocity field of BEM results (Re=200) in solar collector with circular pipe: a) 2D view, b) 3D view
- Na rysunkach 6a-d przedstawiono pola temperatur dla wybranych proporcji *h/D*: 0; 0,25; 0,50; 0,75, natomiast na rysunkach 7a-d wykreślono linie przepływu ciepła.

Rys. 6. Pole temperatury przepływu w przewodzie kolektora słonecznego o przekroju kołowym wyznaczony metodą MEB (roztwór glikolu etylenowego Re=200) h/D: 0,0 (a); 0,25 (b); 0,50 (c); 0,75 (d)

Fig.6. Temperature field of flow in solar collector with circular pipe (ethylene glycol 34%, Re=200), BEM solutions for h/D: 0,0 (a); 0,25 (b); 0,50 (c); 0,75 (d)

Modelowanie konwekcji wymuszonej w kolektorach słonecznych metodą elementów brzegowych

Rys. 7. Linie przepływu ciepła w przewodzie kolektora słonecznego o przekroju kołowym wyznaczony metodą MEB (roztwór glikolu etylenowego, Re=200) h/D: 0,0 (a); 0,25 (b); 0,50 (c); 0,75 (d)

Fig.7. Heatline of flow in solar collector with circular pipe (ethylene glycol 34%, Re=200), BEM solutions for h/D: 0,0 (a); 0,25 (b); 0,50 (c); 0,75 (d)

5 Podsumowanie

Prezentowana metoda elementów brzegowych pozwala w sposób efektywny i dokładny rozwiązywać zagadnienia cieplno-przepływowe w układach rurowych kolektorów słonecznych. W pracy wyznaczono liczby kryterialne Nussleta w zależności od usytuowania rurki kolektora płaskiego w absorberze. Przedstawiono również przykładowe rezultaty obliczeń symulacji pól temperatur i linii przepływu ciepła. Wzór (16) może być zastosowany do analiz prowadzących do polepszenia efektywności działania płaskich kolektorów słonecznych z układami rurowymi przewodów o kołowym kształcie przekroju poprzecznego. Przedstawiony wyżej algorytm wyznaczania pól prędkości przepływu w układzie hydraulicznym kolektora słonecznego i pola temperatury oraz stosownych charakterystyk w postaci liczb kryterialnych ujmujących przepływowe i cieplne parametry układu hydraulicznego może być z powodzeniem zastosowany do analizy układów rurowych kolektorów o różnych kształtach przekroju poprzecznego przewodów. Zagadnienia przepływu oraz transferu masy i ciepła w układach hydraulicznych rurowych kolektorów słonecznych przy użyciu elementów brzegowych prowadzą do stosunkowo prostych algorytmów i ich implementacji obliczeniowych, co przy stosowaniu siatkowych metod obliczeniowych wiąże się ze znacznymi trudnościami związanymi z generacją dostatecznie gęstych siatek obliczeniowych i kosztami obliczeń.

Literatura

- 1. Incropera F.P., DeWitt D.P., Bergman T.L., Lavine A.S.: Fundamentals of Heat and Mass Transfer Edition 6th, Wiley, 2006
- 2. Landau L.D., Lifshitz E.M.: Fluid Mechanics. Pergamon Press, 1987
- Rodríguez-Hidalgo M.C., Rodríguez-Aumente P.A., Lecuona A., Gutiérrez-Urueta G.L., Ventas R.: Flat plate thermal solar collector efficiency- Transient behavior under working conditions. Part I - Model description and experimental validation; *Applied Thermal Engineering* 31, 2011, pp. 2394-2404
- 4. Fan J., Shah L.J., Furbo S.: Flow distribution in a solar collector panel with horizontally inclined absorber strips, *Solar Energy* 81, 2007, pp. 1501-1511
- Stefanović V.P., Pavlović S.R., Ilić M.N., Apostolović N.S., Kuśtrimović D.D.: Numerical simulation of concentrating solar collector P2CC with a small concentrating ratio, *Thermal Science*, vol. 16, 2012, suppl. 2, pp. 471-482
- 6. Teleszewski T.J., Sorko S.A.: Zastosowanie metody elementow brzegowych do wyznaczania płaskich przepływów cieczy lepkiej, *Acta Mechanica et Automatica*, vol. 5, nr 1, pp. 94-105, 2011
- Teleszewski T.J., Sorko S.A.: Wyznaczanie współczynnika Boussinesqa w przepływie laminarnym w prostoosiowych przewodach o dowolnym kształcie przekroju poprzecznego metodą elementów brzegowych, *Symulacja w Badaniach i Rozwoju*, vol. 3, no. 2, pp. 115-128, 2012
- 8. Demianiuk A., Sorko S.A.: Analysis of flow and thermal phenomena in evacuated tube collectors, *Acta Mechanica et Automatica*, vol. 6, nr 4, pp. 5-10, 2012
- Demianiuk A., Sorko S.A.: Modelowanie procesów transportu masy i ciepła w płaskich kolektorach słonecznych, *Symulacja w Badaniach i Rozwoju*, vol. 5, nr 1, pp. 5-16, 2014
- Teleszewski T.J.: Wyznaczanie gęstości strumienia ciepła konwekcji wymuszonej w przepływie laminarnym w przewodach prostoosiowych metodą elementów brzegowych, Symulacja w Badaniach i Rozwoju, vol. 5, no. 2, pp. 143-153, 2014
- 11. Morini G.L.: Analytical determination of the temperature distribution and Nusselt numbers in rectangular ducts with constant axial heat flux, *International Journal of Heat and Mass Transfer*, vol. 43, no. 5, pp. 741-755, 2000
- Schmidt F.W., Newell M.E.: Heat transfer in fully developed laminar flow through rectangular and isosceles triangular ducts, *International Journal of Heat and Mass Transfer*, vol. 10, issue 8, pp. 1121-1123, 1967

Streszczenie

W pracy przedstawiono algorytm MEB symulacji konwekcji wymuszonej w przewodach kolektorów słonecznych. Weryfikacja metody elementów brzegowych została dokonana poprzez porównanie rezultatów obliczeń MEB ze znanym rozwiązaniem analitycznym. W opracowaniu przedstawiono graficzne rezultaty obliczeń symulacji konwekcji wymuszonej w przewodzie kolektora płaskiego o kołowym obrysie przekroju poprzecznego przewodu. W Katedrze Ciepłownictwa Politechniki Białostockiej sporządzono blok programów obliczeniowych do wyznaczania przepływu i wymiany ciepła w zaawansowanych układach hydraulicznych. (język programowania Fortran, implementacja oprogramowania w systemie dostępu zdalnego do serwera obliczeniowego w Centrum Komputerowych Sieci Rozległych Politechniki Białostockiej)

Słowa kluczowe: metoda elementów brzegowych, konwekcja wymuszona, kolektory słoneczne

Simulations forced convection by the Boundary Element Method in solar thermal collector ducts

Summary

The paper presents the numerical application of Boundary Element Method for simulations of forced convection in a solar thermal collector duct. The efficiency and the credibility of proposed algorithm were verified by numerical tests. A numerical examples presented in the article describe fully developed forced convection through circular duct of flat plate collectors. The computer programs were written in Fortran programming language.

Keywords: boundary element method, forced convection, solar thermal collector

Opracowanie zrealizowano w ramach pracy statutowej nr S/WBiIŚ/4/2014 PB.

Symulacja w Badaniach i Rozwoju Vol. 6, No. 4/2015