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Walking the Line. 
Traveling Forces vs Moving Masses 

1 Introduction 
In Vehicle Dynamics, Machine Building, Robotics and Mechatronics, we frequently 

have to deal with moving sub-systems, which interact in one or several points of contact 

[1,2,3,7,8,9,10]. Often one of the systems is treated, in a very abstract way, as 

a concentrated force. More recently, the notion of moving masses along a track was 

proposed. Well known cases are models of train-track interaction, pantograph-traction 

contact, or crane crab systems [4,5,6]. Most approaches concentrate on linear models, 

which allow to apply classical methods like Fourier Transform or Floquet Theory, 

e.g. [6]. However, some singularities occur, which are not well understood. The aim 

of this presentation is to fill this gap. 

The paper shows the limits of the standard approach to moving force problems in the 

case of flexible structures, see Fig. 1. By introducing a different parametrization of the 

middle line of a rope, essential nonlinear effects are captured. The obtained solutions 

are related to the results of the classical approach. 

 
Fig. 1. Human-rope interaction 

Rys. 1. Oddziaływanie człowieka z liną 
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2 Modeling 
The most frequently used models in the 1D theory of moving forces and/or masses are 

in the flexible case the classical string equation 

���� = ���� + �, (1) 

and in the bending-stiff case the Bernoulli-Euler beam equation 

���� = −	����� − ���� + � 

with bending stiffness � and longitudinal force �. 

(2) 

Other terms may be added, e.g. describing an elastic bedding or viscoelastic forces. 

Essential is the fact that the unknown u= ���, � is a scalar quantity, and the moving 

force 

���, � = −������� − ����� (3) 

is described as a scalar as well – just one component acting in the negative z-direction at 

the length coordinate ��, which in general is time dependent.  

The functions � (lateral force density), � (mass density) and � (lateral displacement) are 

defined for nonnegative time � and positions ∈ �0, ��, � > 0. Notice that all densities 

together with the Dirac delta are with respect to the length measure along the string.  

In equations (1) and (2) ge-ometrically nonlinear effects are excluded. The angle of 

inclination of each line or beam element � = tan#���$ ≈ �$ is considered small. This 

assumption may be violated, see e.g. Figs. 2 and 3. This may be also the case for larger 

forces and lighter ropes, and when the position of the force is close to an end point, 

where the rope is suspended, see Figs. 3 and 4. In that case, it is desirable to consider 

the middle line as a parametric curve in the form 

& = &�', �, (4) 

( = (�', �, (5) 

where	) is the displacement along the �-axis and * that along the +-axis, while , 

parametrizes the rope.  

If the assumptions of the linear theory are valid, one should expect � ≈ *	and � ≈ ,. 

The unknown functions ) and * are defined on , ∈ �0, -�	and	� > 0, they are 

determined by the following relations: 

• initial conditions ).�, = )�,, 0, *.�, = *�,, 0, 

• boundary conditions )�0, �, )�-, �,	*�0, �, *�-, �, 

• geometric equation defining the strain /, 

• material law defining the internal force 0, 

• balance of momentum with external forces 1�,, �, ��,, �. 
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Fig. 2. Finite angles 

Rys. 2. Duże kąty ugięcia 

For this paper, we assume	/ = 2)34 + *34 − 1	and 0 = 6/		as measures of the 

elongation of line elements and internal force in the rope. The material constant 6 

defines the stiffness of the material. Nonlinear material laws may be introduced – the 

main point in this study, however, is the geometrical nonlinearity. 

The counterpart of equation (1) in the vector case is a system of equations, one for each 

of the components of the momentum �)7 and �*7 , defining its time evolution in terms 

of the acting forces 

�&�� = �8&'�' + 9, (6) 

�(�� = �8('�' + �. (7) 

What is new is the nonlinear coupling between the equations by the line force 0�,, �. 

In this paper, we lay out the approach in two dimensions. The extension to three 

components is straightforward. 

3 Solution Techniques 
The problem (6), (7) can be treated as a variational problem. In the quasistatic case, 

assuming slow changes of the external forces, the solution can be obtained by 

minimizing the potential energy :�), * step by step over the time interval of interest. 

The total potential energy : has two contributions: the elastic energy stored in the rope 

due to its stretch and the work of the external forces. 

;9<= = �
> ?8>, 

(8) 

;9�� = 9& + �(. (9) 

So, finally, the expression 

; = ;9<= + ;9��, (10) 

is to be minimized with respect to the unknown displacements ) and *, given the 

boundary conditions and the momentary external forces. 

Practically, the displacement functions ) and * are substituted by vectors of nodal 

values, which comprise the spatial positions of the rope suspended in the field 
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of external forces at a chosen number @ + 1 of material points ,A, B = 0,1,2, …@, on the 

interval �0, -�. 
In the balance equations and in the geometric equation, differentiation is replaced by 

differences. The obtained discrete model can be interpreted as that of a chain of @ 

elastically extensible, but bending-stiff, links. In the dynamic case, inertia forces could 

be included as additional external forces, this does, however, not lead to efficient 

numerical solutions. 

In the classical approaches to problems (1) or (2) together with (3), the solution is 

typically searched for in a given analytical form, composed of trigonometric and/or 

exponential terms with certain unknown parameters. 

Equations for parameters like frequencies and amplitudes are derived, e.g. dispersion 

relations, by substituting setups like 

���, � = =EFG�H� − I�, (11) 

into the equation of motion and simplification. At the point of contact ����, often 

���� = J� with a constant running speed J, compatibility conditions have to be 

considered.  

In the present formulation, the equations of motion have to be integrated directly, 

without specified analytical form of the solution. 

For practical implementation, in the vector case the previously described space 

discretization is applied, so that a second order system for 2�@ − 1 coordinates of the 

free nodal points is obtained. By the standard technique, this system is transformed into 

a first order system in the 4�@ − 1-dimensional phase space of positions and 

momentums, see e.g. [7,8]. 

We write this system in the form: 

LM �� = N
N� L�� = O��, L���. 

(12) 

The Jacobian P = QRS��, T describes the linearization of the system around the present 

point of its trajectory. Its momentary spectrum UV1W�P is responsible for the stiffness, 

respectively non-stiffness, of the problem, and hence for the choice of a suitable method 

of integration. 

In the given case, an implicit solver is recommended, since the ratio of the extreme 

eigenvalues of J is rather large in the considered examples. 

Numerical Results 

We start with the quasi-static case of a rope with negligible mass, infinite strength and 

vanishing bending stiffness. 
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Fig. 3. Weightless unstretchable rope

Rys. 3. Nieważka, nierozci

Fig. 3 shows that a force near the interval end leads to a very steep slope between the 

force position and the point of support. Hence, the parameter curve approach is 

essential. Moreover, moving the point of force application further to the right may lead

to vertical line segments and even to such running backwards, i.e., there may be instants 

� such that ∃, ∈ �0, -�
It should be mentioned that, unlike in models (1) and (2), a pure vertical external force, 

i.e. ≡ 0, is not compatible in the case 

in order to compensate the different angles of the line segments at the particle 

the force is applied. This may be an external force, a friction force between the moving 

object and the rope, or it may be an inertia force 

to that object. In that case, a variable forward speed should be regarded.

In the case of an extensible line, the solution looks similar as in the inextensible case, 

but there are some important differences.

Fig. 4. Elastic rope 

Rys. 4. Lina sprężysta

While in the previous case, the point 

the sum of the lengths of the two segments in Fig. 5 is no 

the original length - of the unstrained rope.

Now, if the mass density 

become arcs of catenoids, or piecewise linear approximations thereof in the discrete 

case. It should be stressed that this c

oscillations are damped, as if there was no inertia, just weight.

Such a simplification may be justified e.g. for a rope being totally or partially immersed 

in water.  

A solution is obtained by solving the fo

described by a nonlinear algebraic system. Alternatively, a direct solution of the 
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. Weightless unstretchable rope 

ierozciągliwa lina 

Fig. 3 shows that a force near the interval end leads to a very steep slope between the 

force position and the point of support. Hence, the parameter curve approach is 

essential. Moreover, moving the point of force application further to the right may lead

to vertical line segments and even to such running backwards, i.e., there may be instants 

�		)�,, � > �. 

It should be mentioned that, unlike in models (1) and (2), a pure vertical external force, 

, is not compatible in the case of (6), (7). A horizontal force has to be introduced 

in order to compensate the different angles of the line segments at the particle 

the force is applied. This may be an external force, a friction force between the moving 

r it may be an inertia force – provided that there is a mass assigned 

to that object. In that case, a variable forward speed should be regarded. 

In the case of an extensible line, the solution looks similar as in the inextensible case, 

mportant differences. 

ężysta 

While in the previous case, the point �)�,���, �, *�,���, ��	followed an ellipse, now 

the sum of the lengths of the two segments in Fig. 5 is no longer constant, it exceeds 

of the unstrained rope. 

Now, if the mass density Z is big enough and constant, the previously straight segments 

become arcs of catenoids, or piecewise linear approximations thereof in the discrete 

case. It should be stressed that this concerns the idealized case of slow motion 

oscillations are damped, as if there was no inertia, just weight. 

Such a simplification may be justified e.g. for a rope being totally or partially immersed 

A solution is obtained by solving the force balance at the force position, which is 

described by a nonlinear algebraic system. Alternatively, a direct solution of the 
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minimum energy formulation may be attempted. Actually, the presented result in Fig. 4 

was obtained by a shooting method. 

Finally, if inertia effects cannot be neglected, a dynamical approach is required. In this 

case, results depend on the imposed speed of moving, i.e. on 

[ = �� + \ N'
N� . 

(13) 

A semi-analytical solution by a modal approach, for the case of 49 and of 149 modes 

and a speed close to the velocity of elastic waves J = 0.9999W, is shown in Fig. 5.  

  

Fig.5. String displacement in case of the force approaching a support 

Rys. 5. Przemieszczenia struny w przypadku siły zbliżającej się do podpory 

Alternatively, we apply the discrete approach outlined before, using the same number 

of degrees of freedom, and start from the equilibrium state with zero velocities 

and positions according to the minimum potential energy of the gravity forces alone. 

Here, we illustrate in Fig. 5 the difference between perfectly damped and dynamic 

motion by an example with a moderate speed of the force. 

 
Fig. 6. Inertial rope in the case of speed		J = 10 m/s 

Rys. 6. Lina z bezwładnością w przypadku prędkości	J = 10	_/U 

Figure 6 captures the moment	� = 1.5	U, when the moving force has traveled three 

quarters of the length of rope of lenght 	- = 20	_	at a speed	J = 10	_/U.  
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Remark: In the nonlinear case, definitions of speed may vary. We choose the speed 

along the line in spatial 

 

As an example of a rope (string) subjected to moving loads we can give a catenary 

system visible on Fig. 7. Technically, in order to overcome problems resulting from 

wave reflection from supports, the system is composed of two strings 

and the support wire. As we can see, the wire in contact with the pantograph is not 

connected directly to the posts. Instead, it is suspended on droppers attaching it to the 

upper support wire, see [1,5]. 

Fig. 7. Catenary system subjected 

Rys. 7. Sieć zasilająca poddana działaniu ruchomej siły 
prądu 

4 Conclusions
In the case of moving contact between a flexible 1D structure and an external massless 

object or a concentrated 

of small angles may become inadequate near points with a prescribed position. Friction 

forces may be essential, the longitudinal forces before and behind the point of contact 

may differ in a signifi

of very thin membranes, tissues or meshes. The simulated effects diminish with 

increasing pre-stress, weight and bending stiffness of the considered structure. Soft 

supports are less prone to singu

Even in the simple case of a person walking step by step along a line, it is not 

reasonable to describe the moving object as a lumped mass. The interaction with the 

slack line can be well modeled as a moving force (or a pair o

value and direction – 

turn, the person on the line will adopt their movements to that of the line, so that there is 

a coupling both ways.
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In the nonlinear case, definitions of speed may vary. We choose the speed 

along the line in spatial configuration. 

As an example of a rope (string) subjected to moving loads we can give a catenary 

system visible on Fig. 7. Technically, in order to overcome problems resulting from 

wave reflection from supports, the system is composed of two strings – the contact wire 

and the support wire. As we can see, the wire in contact with the pantograph is not 

connected directly to the posts. Instead, it is suspended on droppers attaching it to the 

upper support wire, see [1,5].  

Fig. 7. Catenary system subjected to a moving force exerted by a pantograph 

ąca poddana działaniu ruchomej siły wywieranej przez odbierak 

Conclusions 
In the case of moving contact between a flexible 1D structure and an external massless 

object or a concentrated mass, results depend on model assumptions. The assumption 

small angles may become inadequate near points with a prescribed position. Friction 

forces may be essential, the longitudinal forces before and behind the point of contact 

may differ in a significant degree. Analogous results may be expected in the case 

very thin membranes, tissues or meshes. The simulated effects diminish with 

stress, weight and bending stiffness of the considered structure. Soft 

supports are less prone to singular behavior than rigid ones. 

Even in the simple case of a person walking step by step along a line, it is not 

reasonable to describe the moving object as a lumped mass. The interaction with the 

slack line can be well modeled as a moving force (or a pair of such forces) with variable 

 which depend on the behavior of the person walking the line. In 

turn, the person on the line will adopt their movements to that of the line, so that there is 

a coupling both ways. 
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The moving sub-system, be it a rolling wheel, a pantograph or a pedestrian, has to be 

modeled as a dynamical system, in general with many more degrees of freedom than 

suffice in the case of a point mass or a rigid body. If a complete simulation of the 

coupled system is to complex, also a co-simulation of both systems, modeled apart from 

each other, should be considered as one of the best options.  

Considerable simplifications are possible if the feedback between the subsystems can be 

neglected. This concerns, to some extent, analytical models of rail-wheel motion. In 

each application, it has to be considered, whether the substitution of a vehicle by the 

force it exerts on the track is acceptable. On the other hand, in the context of very 

flexible manifolds, interacting with a moving rigid lump of mass, models assuming a 

functional dependence of the vertical displacement on the horizontal coordinate are 

rarely ever adequate. 
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Summary  

In railway mechanics, and more general, in civil engineering and vehicle dynamics, 

the problem of simultaneous modeling of a track and a vehicle has been the subject 

of many papers. Often one of the coupled subsystems is highly simplified in order to be 

able to obtain results on the other. For example, when the propagation of waves in the 

track is the main concern, vehicles such as a train or a taxiing airplane, are treated as an 

external force, travelling at a certain speed along a given path. In that case, the force is 

assumed as independent of the motion in the track, which results from the load. On the 

other hand, dynamical simulations of vehicles typically run on a defined ground, which 

is given and invariant, whatever the motion of the vehicle.  

In order to make a track model more realistic, the vehicle model may be improved, 

without going as far as to couple a full-fledged vehicle model with a realistic model 

of a track consisting of rails on sleepers, supported via some subgrade on the ground. 

A first simple step is to attach an additional mass in the contact point, i.e. the position, 

where the external force is applied. 

Keywords: chord, waves, moving forces, geometrical nonlinearity 

Wędrowanie po linie. 
Ruchome siły i ruchome masy 

Streszczenie  

W inżynierii kolejowej lub ogólniej - w budownictwie i dynamice pojazdów 

zagadnienie równoczesnego modelowania toru i pojazdu było przedmiotem wielu 

badań. Często jeden ze sprzężonych układów był nadmiernie upraszczany, aby uzyskać 
rozwiązanie problemu. Zagadnienie struny najczęściej rozpatruje się w zakresie małych 

przesunięć i kątów, poszukiwana jest wówczas funkcja skalarna jednej zmiennej. 

Gdy konfiguracja aktualna odbiega znacznie od konfiguracji materialnej, wyniki 

uzyskane mogą być fizycznie nieakceptowalne. W pracy do rozwiązywania tego typu 

zadań zaleca się podejście parametryczne. Zalety takiego podejścia demonstrowane są 
na podanych przykładach z zakresu modelowania współpracy pojazdu z trakcją 
oraz popularnych sportów rekreacyjnych. 

Słowa kluczowe: struna, fale, siły wędrujące, nieliniowość geometryczna 
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