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The Catalogue Method. Part II 

1 Introduction 
The M3 Enigma machine was an electro-mechanical encrypting device used during 
World War II, mainly by the German military and government services. The catalogue 
algorithm given in part I of this paper can be used to decode messages eavesdropped 
before September 15, 1938. Elements of the key, which we can obtain thanks to this 
algorithm, are not sufficient enough to read messages. Therefore, the author provides 
her own algorithm which returns the ring settings and the initial drum settings 
and additionally, the new plugboard algorithm which relies on Rejewski's idea, but its 
technical solution is the author’s proposal. 

The German service used different kinds of Enigma machines, but we are only 
interested in the M3 Enigma machine. For the reader's convenience, we described 
the construction of this device and the manner of generating messages transmitted until 
September 15, 1938 in [2] (in the Appendix). This section makes up a brief survey 
of well-known information taken from publications [6, 10, 7, 8, 3, 4, 9]. We suggest 
reading the Appendix first for better understanding the terms and facts that we use. 
These terms are denoted in this paper by *. Section 2 contains a mathematical analysis 
of the M3 Enigma machine. In sections 3 we present the new plugboard algorithm. 
We use Rejewski's idea to read plug connections on the basis of suitably signed 
permutations, but we give our own proposal how to get all the dissimilar notations 
for these permutations quickly. In section 4 we propose the ring settings algorithm 
designed according to our idea. By means of these three algorithms (described in parts I 
and II) we can generate the complete daily key* and read the message settings* 
on the basis of a given set of messages intercepted before September 15, 1938. 
This allows us to read these messages. We enclose an implementation of given 
algorithms in Cpp language. 

2 Mathematical model 
The cryptosystem of the M3 Enigma machine will be defined as a tuple (P, C, K, E, D), 
where P = {A, B, …, Z} is the plaintext space, C = P is the ciphertext space and K is 
a set of all possible keys. 

 E = {Λk : k∈K} is a set of encryption functions Λk : P → C. 

 D = {∆k : k∈K} is a set of decryption functions ∆k : C → P. 

Each letter a∈P is transformed according to the following permutation (cf. [10]). 
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S - is a permutation describing the plugboard* transformation (S consists of transposi-
tions and 1-cycles only), B - is a permutation describing the reflector* transformation, 

L, M, R - are permutations describing transformations of the three cipher drums*, 

H - is a transformation of the entry wheel* (H is the identity permutation), 

Q = (ABCDEFGHIJKLMNOPQRSTUVWXYZ) – a cycle of length 26, 

Ds[i] (i = l, m, r) - positions of drums* (left, middle and right) before pressing any key, 

Rs[i] (i = l, m, r) - positions of rings* (left, middle and right) (Ds[i], Rs[i]∈P), 

x, y, z - positions of rotors* before pressing any key (values from set IP = {0,1,…,25}), 

x = (Ds[l]-Rs[l])%26 for the left rotor, 

y = (Ds[m]-Rs[m])%26 for the middle rotor, 

z = (Ds[r]-Rs[r])%26 for the right rotor (cf. [6]). 

We denote by ΛH a permutation which we obtain by substituting in the formula (1) the 
identity permutation H for a permutation S, i.e. Λk = Λ = SΛHS -1. We treat the letters A, 
B, …, Z of the Latin alphabet as the numbers from the set IP. 

3 Plugboard algorithm 
The plugboard algorithm generates all possible permutations S, which satisfy 
the equation AMDM = SAHDHS -1. By using permutations AM and DM the first and the 
fourth letters of each message were coded on a given day. The product AHDH is a result 
of the catalogue algorithm (cf. [2], section 5). One of the obtained permutations S 
represents plug connections. The cryptologists found this permutation S by hand. They 
placed the product AHDH under the product AMDM so that cycles of the same length 
(in both permutations) were written down one under the other. But they did not always 
obtain a solution quickly. The algorithm presented below relies on this idea but the 
author proposed the quick manner of generating all the dissimilar notations for couples 
of permutations on the basis of which we obtain the permutation S. 

Tab. 1. Zestaw szyfrogramów wykorzystanych w eksperymentach 

Tab. 1. The set of messages which were used in experiments 

( 1) LIO IWN BVSVIWKOUYZKHEHCCNBKWHTMMI 

( 2) YCJ OFQ IQAOVGEDVSAYLVTJCQGYRPXWQU 

( 3) MKG DDU ZIJTCVRCXQWYYGYJGIWRHBSAHT 

( 4) RMV CJH JAXLOYCKQKHBKSXHCILQNOLKVH 

( 5) OOH NRL DNHNDEKDDQSJAFVURZIWVJTGBK 

( 6) PSD LXS UUSOFCFSYCUHZBSMEMOYWSBSNQ 

( 7) VRQ RHJ OHNRXYIDMUPOXWMZRZIGOQMYSD 

( 8) JHY MIF DEEGFUXRYRSBNGISWBXOYXFKKP 

( 9) KUU ATV IJXULQTGTSHKOBZDETGAAQFLPQ 

(10) HVP POZ WNIZUZOVEGOGTQZTROXURPLVQK 

(11) IBB QVC IXQTPPJPTNFZPYMRVSAUTBHFTJ 

(12) AWN FEB BQKUHSAFAZGIVIHFCDVUHNEJQK 

(13) CDL HZI DUYYSPVBTXHPWXUGJLJFADGFRW 

(14) SXR ECR BWTIDPHQJYQMCQHKUEFSJNPEAI 

(15) EJT BAO SJLGXJEGWODMEAAFFUMPHMKEMQ 

(16) FFF JLY NSPMPLANTTXKRITJHAQCFRLNNF 

(17) ZGZ KSM IYSZTRZQJHVQKSQRNAGOLBMYHH 

(18) DNK GQX VNGKDZVVPHRBAUSJJSKGQYHCCJ 

(19) NZC TGK YQBBRRKUFZCQSWCAUXIIGLLQIU 

(20) XPS SKA WOWXIOIZFYTVVQDSCYVZPJOTTB 

(21) WQA WUE LVYNFGVSJZFUFRAGBWEZICVTGY 

(22) GYM ZBT QSXCNCFSMGBEHTERSJIDZKHVMF 

(23) UEW UNW UYEJKXKOZRMMHPXHNNBBLGCDJU 

(24) TLI YMD HHRENCJMTUOYOSRXLDKZFDQNIR 

(25) BAX XPP YHQPDLVPQGXOUKROILVXIWYPUC 

(26) QTE VYG TREUTGCDHREXSGDMVFTFDUGOHW 

Example 3.1 We continue computations from [2] (cf. [2], example 5.1). Table 1 
contains messages eavesdropped during the same day (i.e. received for the same daily 
key). All letters of the alphabet occur on each of the six headline positions. We reveal 
that these headlines were generated for ring settings RS = ZHL, for the order of drums I, 
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II, III, for settings IDS = YNC and for plug connections  
S = (BY)(CX)(EO)(HV)(KR)(PZ). 

Let us consider permutations AMDM and AHDH = ZGN (cf. [2], example 5.1). 

AMDM: AFJMDGZK.BXSE.NTYO.CHPLIQVR.U.W 

ZGN: AFJMDGPR.BENT.CSOY.HKXVZLIQ.U.W 

Let us write down ZGN as follows 

ZGN: AFJMDGPR.YCSO.NTBE.XVZLIQHK.U.W 

and read permutations 

S1 =(BY)(CX)(EO)(HV)(KR)(PZ), S2 =(BY)(CX)(EO)(HV)(KR)(PZ)(UW) 

Definition 3.1 Let us assume that permutations A, B and S (of an n-element set) satisfy 
the equation A = SBS -1and the permutation S consists of transpositions and 1-cycles 
only. Let us write down permutations A and B (in cycle notation) one under the other. 
Additionally, let us place cycles of both permutations so that any letter bj will be written 
under the letter ai, where S(ai)=bj and S(bj)=ai for i, j = 1, 2, …, n. Then we shall say 
that A and B are suitably signed for the permutation S. We shall also say, that cycles  
(al, al+1, …, ak) and (bl, bl+1, …, bk) are suitably signed for S.     

Lemma 3.1 Let us assume that permutations A, B and S (of an n-element set) satisfy 
the equation A = SBS -1 and the permutation S consists of transpositions and 1-cycles 
only. Let us write down A and B in cycle notation. Let A1=(a1, a2, …, ak) and B1=(b1, b2, 
…, bk) be cycles of A and B accordingly. Let A1, B1 be suitably signed for S. If the i-th 
sign of A1 belongs to a cycle Bi (of the permutation B) and the i-th sign of B1 belongs to 
a cycle Ai (of the permutation A), then 

(A) Lengths of cycles Ai and Bi are the same. 

(B) We can write cycles Ai and Bi in such a way that they will be suitably signed. 

Lemma 3.2 (cf. [6]) Let A and B be similar permutations. We can always distinguish in 
these permutations (expressed as products of disjoint cycles) cycles of the same length 
corresponding to each other.       

Lemma 3.1 results from lemma 3.2 and from the assumption that the permutation S 
consists of transpositions and 1-cycles only. 

Example 3.2 Let permutations A, B and S satisfy assumptions of lemma 3.1 

A = (U)(W)(BXSE)(NTYO)(AFJMDGZK)(CHPLIQVR) 
B = (U)(W)(YCSO)(BENT)(AFJMDGPR)(XVZLIQHK) 
S = (BY)(CX)(EO)(HV)(KR)(PZ) 

Let us consider cycles (BXSE) and (YCSO) which are suitably signed (for S). 
For signs B and Y we have cycles (NTYO) and (BENT), which have length 4 and can 
be suitably signed (the second cycle has to be signed as (NTBE)). For signs X and C we 
have cycles (CHPLIQVR) and (XVZLIQHK), which have length 8 and are suitably 
signed. 

3.1 Schema of the plugboard algorithm 

1. Enter permutations AMDM, AHDH (parameters S1, S2) in the cycle notation. 
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2. For each of these permutations create a list of elements (of type String) which 
consist of cycles of the same length (separated by a single dot). Each list is ordered 
for the sake of cycle lengths. E.g., for permutations AMDM and AHDH (example 3.1) 
the algorithm will create 3-element lists SL1 and SL2 accordingly 

SL1: .U.W., .BXSE.NTYO., .AFJMDGZK.CHPLIQVR. 

SL2: .U.W., .BENT.CSOY., .AFJMDGPR.HKXVZLIQ. 

3. For each couple of consecutive elements from lists SL1 and SL2 (i.e. for each 
length of cycles) find all possible couples of suitably signed cycles. 

(a) Substitute a consecutive element of the list SL1 (SL2) for variable sl1 (sl2), e.g. 
sl1: .BXSE.NTYO., sl2: .BENT.CSOY. 

(b) For each consecutive cycle from sl1 and for each representation of any cycle from 
sl2 create (if it is possible) a couple of suitably signed cycles. That is, for a couple 
of cycles (e.g. BXSE and CSOY) create the following pairs [BXSE, CSOY], [BXSE, 
SOYC], [BXSE, OYCS], [BXSE, YCSO] and check which of them are suitably signed; 
e.g., for the last pair [BXSE, YCSO]: 

• Substitute a cycle from sl1 for variable sc1 (e.g. sc1=BXSE) and a cycle from 
sl2 for variable sc2 (e.g. sc2=YCSO). 

• In permutation S1 find a cycle which contains the first letter of string YCSO (it will 
be cycle NTYO) and in permutation S2 - a cycle which contains the first letter 
of string BXSE (it will be cycle BENT). Substitute NTYO for variable sh1 and NTBE 
for variable sh2. If sh1[1]∈sc1 and sh2[1]∈sc2, clear sh1 and sh2. 

• Check whether for any couple of letters [sc1.sh1][i] and [sc2.sh2][i] lengths 
of cycles (which contain these letters) in permutations S1 and S2 accordingly are 
identical. That is, e.g. for the couple [BXSE.NTYO YCSO.NTBE] compare lengths 
of the following couples of cycles [NTYO, BENT], [CHPLIQVR, HKXVZLIQ], 
[BXSE, CSOY], [NTYO, BENT], [NTYO, BENT], [NTYO, BENT], [BXSE, CSOY], 
[BXSE, CSOY]. 

• Check whether cycles sc1.sh1 and sc2.sh2 can be suitably signed (i.e., if Y is 
signed under B, then B has to be signed under Y). If some letter occurs in one string 
only, the algorithm assumes that it is all right; e.g., couple [BXSE.NTYO, 
YCSO.NTBE] is correct. 

• If cycle sh1 precedes cycle sc1 in string S1, clear variables sh1 and sh2. 

(c) Use (if it is possible) each correct pair [sc1.sh1 sc2.sh1] to expand strings 
which are in the vector CSt so as to obtain all possible couples of suitably signed 
permutations; i.e., for each object of the vector CSt (each object consists of two 
fields s1 and s2 of type String): 

(i) Follow steps (ii)-(iv) if strings s1, s2 do not contain cycles sc1 and sc2 
accordingly. 

(ii) Substitute string s1 (s2) for variable h1 (h2). Join sh1 at the end of h1 and sh2 
at the end of h2 if sc2[1]∉h1 or sc1[1]∉h2. 
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(iii) Join sc1 (sc2) at the beginning of h1 (h2). 

(iv) Add the couple of strings [h1 h2] at the end of the vector CSt. 

(d) From the vector CSt remove objects, which were created by joining shorter cycles 
(i.e., objects joined in previous iterations). 

4. Move complete couples of strings which represent suitably signed permutations 
from the vector CSt to the vector CS. 

5. For each couple of permutations from CS create a permutation S. 

Executing the plugboard algorithm 

(1).We enter permutations S1 and S2 

S1: U.W.BXSE.NTYO.AFJMDGZK.CHPLIQVR 

S2: U.W.BENT.CSOY.AFJMDGPR.HKXVZLIQ 

(2).The algorithm creates lists SL1 and SL2 

SL1: .U.W., .BXSE.NTYO., .AFJMDGZK.CHPLIQVR. 

SL2: .U.W., .BENT.CSOY., .AFJMDGPR.HKXVZLIQ. 

(3b). For each coupe of cycles sc1 and sc2 (of the same length), where sc1∈S1 
and sc2∈S2 the algorithm checks whether these cycles are suitably signed and next 
it generates strings of the form [sc1.sh1 sc2.sh2]. For permutations S1 and S2 
the algorithm created the couples (1)-(8) (see below). 

(3cd). Each correct couple [sc1.sh1 sc2.sh2] is used to expand strings which are 
in the vector CSt. The algorithm joined the following strings to the vector CSt. 
The numbers in the brackets mean the numbers of consecutively joined couples 
[sc1.sh1 sc2.sh2]. 

U. U.   (1) (sc1=U, sh1="", sc2=U, sh2="") 

U.W W.U   (2) 

W. U.    (3) 

W. W.    (4) 

BXSE.NTYO YCSO.NTBE  (5) 

NTYO. NTBE.   (6) 

AFJMDGZK. AFJMDGPR.  (7) 

CHPLIQVR. XVZLIQHK.  (8) 

//-------------------------- 

U. U.      (1) <--- Add 1-cycles 

U.W W.U     (2) 
WU. WU.    (1,4)  (We join string (4) to string (1)) 

BXSEU.NTYO YCSOU.NTBE   (1,5)  <--- Join 4-cycles 

BXSEU.WNTYO YCSOW.UNTBE  (2,5) 

BXSEWU.NTYO YCSOWU.NTBE  (1,4,5) 

NTYOU. NTBEU.    (1,6) 

NTYOU.W NTBEW.U   (2,6) 

NTYOWU. NTBEWU.   (1,4,6) 

AFJMDGZKBXSEU.NTYO AFJMDGPRYCSOU.NTBE  (1,5,7) <--- Join 8-cycles 

AFJMDGZKBXSEU.WNTYO AFJMDGPRYCSOW.UNTBE  (2,5,7) 

AFJMDGZKBXSEWU.NTYO AFJMDGPRYCSOWU.NTBE  (1,4,5,7) 

AFJMDGZKNTYOU. AFJMDGPRNTBEU.   (1,6,7) 

AFJMDGZKNTYOU.W AFJMDGPRNTBEW.U   (2,6,7) 

AFJMDGZKNTYOWU. AFJMDGPRNTBEWU.   (1,4,6,7) 

CHPLIQVRAFJMDGZKBXSEU.NTYO XVZLIQHKAFJMDGPRYCSOU.NTBE  (1,5,7,8) 
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CHPLIQVRAFJMDGZKBXSEU.WNTYO XVZLIQHKAFJMDGPRYCSOW.UNTBE  (2,5,7,8) (a) 

CHPLIQVRAFJMDGZKBXSEWU.NTYO XVZLIQHKAFJMDGPRYCSOWU.NTBE  (1,4,5,7,8)(b) 

CHPLIQVRAFJMDGZKNTYOU. XVZLIQHKAFJMDGPRNTBEU.   (1,6,7,8) 

CHPLIQVRAFJMDGZKNTYOU.W XVZLIQHKAFJMDGPRNTBEW.U   (2,6,7,8) 

CHPLIQVRAFJMDGZKNTYOWU. XVZLIQHKAFJMDGPRNTBEWU.   (1,4,6,7,8) 

(4).The algorithm found two strings which represent suitably signed permutations. 

(a)CHPLIQVR.AFJMDGZK.BXSE.U.W.NTYO 

XVZLIQHK.AFJMDGPR.YCSO.W.U.NTBE 

(b)CHPLIQVR.AFJMDGZK.BXSE.W.U.NTYO 

XVZLIQHK.AFJMDGPR.YCSO.W.U.NTBE 

(5).Finally, it generated the following permutations 

S1 =(BY)(CX)(EO)(HV)(KR)(PZ)(UW), S2 =(BY)(CX)(EO)(HV)(KR)(PZ) 

3.2 Implemention 

The PlugBoard() method of the Cycles class determines all possible permutations 
S, which satisfy the equation AMDM = SAHDHS -1. By using permutations AM and DM 
the first and the fourth letters of each message were coded on a given day. The product 
AHDH (parameter S2) is a result of the catalogue algorithm (cf. [2], section 5). 
( 1) void Cycles::PlugBoard(String S1, String S2){ 

( 2) String s1, s2, s2h, sc1, sc2, sh1, sh2, h1, h2; 

( 3) std::vector<CSO*>CSt; int SCS=0, i=1, j, v; 

( 4) TStringList *SL1=strList(S1); TStringList *SL2=strList(S2); 

( 5) while(i<SL1->Count){ 

( 6)   s1=SL1->operator [](i); s2=SL2->operator [](i); 

( 7)   while(s1.Length()>1){ 

( 8)     sc1=cycle(s1,s1[2]); s1=delCycle(s1,sc1); s2h=s2; 

( 9)     while(s2h.Length()>1){ 

(10)       sc2=cycle(s2h, s2h[2]); j=1; 

(11)       while(j<=sc2.Length()){ 

(12)         if(compLength(sc1,sc2,SL1,SL2)){ 

(13)           if((sc1.Pos(sc2[1])&&sc2.Pos(sc1[1])))sh1=sh2=""; 

(14)           else{ 

(15)             sh1=cycle(S1,sc2[1]); 

(16)             sh2=move(sh1,sc2[1],cycle(S2,sc1[1]),sc1[1]);} 

(17)           if(compLength(sh1,sh2,SL1,SL2)&&suitSign(sc1+sh1,sc2+sh2)){ 

(18)             if(S1.Pos(sc1)>S1.Pos(sh1))sh1=sh2=""; 

(19)             if(sc1[1]==S1[2])CSt.push_back(new CSO(sc1+sh1,sc2+sh2)); 

(20)             else{v=0; 

(21)               while(v<CSt.size()){ 

(22)                 h1=CSt[v]->s1; h2=CSt[v]->s2; 

(23)                 if(!(h1.Pos(sc1[1])||h2.Pos(sc2[1]))){ 

(24)                   if(!(h1.Pos(sc2[1])&&h2.Pos(sc1[1]))){ 

(25)                     h1+=sh1; h2+=sh2;} 

(26)                   h1=sc1+h1; h2=sc2+h2; 

(27)                   CSt.push_back(new CSO(h1,h2));} 

(28)                 v++;}}}} 

(29)         sc2=sc2.SubString(2,sc2.Length()-1)+sc2[1]; j++;} 

(30)       s2h=delCycle(s2h,sc2);}} 

(31)   for(int l=0; l<SCS; l++)CSt.erase(&CSt[0]);} 

(32)   v=0; 

(33)   while(v<CSt.size()){ 

(34)     if(CSt[v]->s1.Length()==26){ 

(35)       CS.push_back(new CSO(CSt[v]->s1,CSt[v]->s2)); 

(36)       CSt.erase(&CSt[v]); v--;} 

(37)     v++;} 
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(38)   SCS=CSt.size(); i++;} 

(39) createS();} 

The strList() method of the Cycles class creates (for a permutation provided 
by the parameter) the list, elements of which consist of cycles of the same length 
(separated by a single dot) (e.g. the lists SL1, SL2). Each list is ordered for the sake 
of cycle lengths. The cycle() method of the Cycles class returns a cycle (which 
contains an indicated sign) included in a given permutation (e.g. cycle(S1,'Y') 
returns NTYO). The move()method of the Cycles class returns another 
representation of a cycle (provided by the third parameter). That is, it moves signs 
of a given representation so that the letter pointed out by the fourth parameter was 
placed on the same position as the letter (indicated by the second parameter) in the cycle 
pointed out by the first parameter. For example, if we call 
move("BONT",'B',"NTYE",'Y'), we shall obtain YENT. The compLength() 
method of the Cycles class compares cycle lengths (cf. subsection 3.1, 3.(b), example 
[BXSE.NTYO YCSO.NTBE]). The suitSign() method of the Cycles class 
checks whether given (by parameters) cycles can be suitably signed. The delCycle() 
method of the Cycles class removes the indicated cycle from a given string. 
The createS() method of the Cycles class generates the list of permutations S 
on the basis of suitably signed permutations included in the vector CS. The vectors CS 
and CSt (an auxiliary vector) contain objects which consist of two fields of type 
String. 

4 The ring setting algorithm 
The first six letters (a headline) of each message were ciphered on a given day (until 
September 15, 1938) for the same ring settings (in short RS) and initial drum settings 
(in short IDS). That is, these 6 letters were coded consecutively for the same 
permutations A, B, C, D, E and F (determined for rotor settings (in short Rt) resulting 
from the formula Rt[i] = (Ds[i]-Rs[i])%26 (i = l, m, r)). We can obtain the same rotor 
settings for different couples of relative ring settings (in short RRS) and relative drum 

settings (in short RDS). The reader can observe this fact in Table 2. 

The algorithm presented below generates settings RS and IDS for which in fact 
the messages were ciphered. RS are indispensable to read each message. 
The cryptologists reconstructed settings RS by means of the ANX method (cf. [6]). 
The proposed ring setting algorithm is the author's idea. We are still analyzing the set 
of messages (Table 1) eavesdropped during the same day. 

Example 4.1 Given messages (Table 1) were coded for settings RS = ZHL  
and IDS = YNC. We executed the catalogue algorithm for different settings RRS. Table 
2 contains settings RRS, corresponding to them settings RDS (received in the catalogue 
algorithm) and differences Rt[i] = (RDS[i]-RRS[i])%26 (i = l, m, r). Due 
to the regularities which result from these differences, we can obtain RS and IDS. 
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Tab. 2. Ustawienia RRS, RDS i Rt 

Tab. 2. Settings RRS, RDS and Rt 

XUA, - 

TFB, - 

RLC, - 

MQD, - 

VHE, UMV, [25,5,17] 

SEF, RKW, [25,6,17] 

WAG, VGX, [25,6,17] 

EPH, DVY, [25,6,17] 

GBI, FHZ, [25,6,17] 

ADJ, ZJA, [25,6,17] 

JYK, IEB, [25,6,17] 

FCL, EIC, [25,6,17] 

ZOM, YUD, [25,6,17] 

LTN, KZE, [25,6,17] 

RKO, QQF, [25,6,17] 

HRP, GXG, [25,6,17] 

CZQ, BFH, [25,6,17] 

IJR, HPI, [25,6,17] 

YVS, XBJ, [25,6,17] 

OST, NYK, [25,6,17] 

NIU, MOL, [25,6,17] 

QMV, PSM, [25,6,17] 

UGW, TMN, [25,6,17] 

PNX, OTO, [25,6,17] 

DWY, CCP, [25,6,17] 

BCZ, - 

 

4.1 Schema of the ring settings algorithm 

Input: Data from a given day, i.e. any message, a couple of RRS and RDS (received 
in the catalogue algorithm), the proper order of drums and plug connections S. 

Output: The algorithm returns ring settings and initial drum settings. 

1. Set your machine in the following way: 

• Set the drums to the proper order and the plugboard to the permutation S. 

• Set rings to relative ring settings (parameter rrs) and drums to relative drum 
settings (parameter rds) which you obtained in the catalogue algorithm. 

• Enter a headline (parameter head) and a content (parameter text) of a given 
message. 

2. Determine rotor settings for given settings rrs and rds. For these rotor settings 
the first six letters of all headlines are coded / decoded on a given day. 

3. Determine message settings by decoding the headline (of the message) for settings 
rrs and rds. 

4. For each (of 263 possible) ring settings rrs1 (see: the iteration loop, lines 7-13) 

• Determine such drum settings rds1 so that rotor settings will be the same as the 
ones determined in point 2, i.e. Rt[i]=rds[i]-rrs[i]=rds1[i]-rrs1[i] for i=l, r, m. 

• Set rings and drums to rrs1 and rds1 accordingly. 

• Encrypt message settings (of the given message) for the current couple of settings 
rrs1 and rds1. If you obtained the headline head, write out relative ring settings 
rrs1, relative drum settings rds1 and a decoded (for settings rrs1 and message 
settings) text of the given message. 

5. Look through decoded contents of the message. Ring settings, for which a decoded 
content is intelligible, make up actual ring settings for which all messages of a given 
day were coded. 

Example 3.1 Continuation. 

Input: RRS=AAW, RDS=ZGN, 

message: LIOIWN BVSVIWKOUYZKHEHCCNBKWHTMMI 
ZGY YMP SFEGNUTVALKUQVQHHDGZIQUCFL <--- A fragment of a result 

ZHF YNW QROMWFYAVLMCSSQURFZDPQVZFQ  of the ring settings algorithm 

ZHG YNX JTGQHILWLLHNAMCIUFFUOZBWZS 

ZHH YNY PEARUKZBDKJMPLSHIKVZHQSOWV 

ZHI YNZ AHMTKJWSJKRXZXAXHSMOCWEYOO 
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ZHJ YNA ODWECZHSQPJYOAPKXLKWTJSXYJ 

ZHK YNB VYRHPUISLPVYFMZQKOABKQDYXB 

ZHL YNC ABCDEFGHIJKLMNOPQRSTUVWXYZ 

ZHM YND HQTYESHNMRQZCGFGPKORIAXXXX 

ZHN YNE GMTBUZCXWDEWMQMDGBWVUFEBXG 

We can state that actual RS=ZHL. In order to read a text of any message we have to set 
rings to ZHL and drums to message settings (of this message) and type a text. 

4.2 Implementation 

The findRS() method of the Cycles class generates actual ring settings, initial 
drum settings and decodes a content of a given (by parameters head and text) 
message. The table Rt[] keeps rotor settings for given (by parameters rrs and rds) 
relative ring settings and relative drum settings. The codeStr() method of the 
Enigma class decodes a specific (by the parameter s) text for current settings 
of Enigma. During the coding process the double step on the middle drum is taken into 
account. The moveRing() method of the Cycles class shifts ring settings forward 
by k positions. The fields Rs and Ds of an object of the Enigma class represent current 
ring settings and drum settings accordingly. Current rotor settings are stored in the table 
RT[]. By tpR and tpM we signify the turnover positions for the right and the middle 
drums accordingly. The codeLetter() method ciphers a letter described by the first 
parameter for the rotor settings determined by the next three parameters. 
( 1) void Cycles::findRS(String rrs, String rds, String head, String text){ 

( 2) int* Rt=new int[4]; 

( 3) for(int i=1; i<=3; i++) Rt[i]=(26+CTI(rds[i])-CTI(rrs[i]))%26; 

( 4) CE->setEnigma(rrs,rds); 

( 5) String key=CE->codeStr(head); key=key.SubString(1,3); 

( 6) String rds1="AAA", rrs1="AAA"; 

( 7) for(int i=1; i<17576; i++){   // 263 possible ring settings 

( 8)   for(int k=1; k<=3; k++) rds1[k]=ITC((Rt[k]+CTI(rrs1[k]))%26); 

( 9)   CE->setEnigma(rrs1,rds1); 

(10)   if(CE->codeStr(key+key)==head){ 

(11)     CE->setEnigma(rrs1,key); 

(12)     out >> rrs1+" "+rds1+" "+CE->codeStr(text);} 

(13)   rrs1=CE->moveRing(rrs1,1);}} 

//------ 

(14) String Enigma::codeStr(String s){   // with the double step 

(15) String PI=Rs, BE=Ds, BEH="", s1=""; 

(16) int* RT=new int[4]; int j=s.Length(); s=s.UpperCase(); 

(17) for(int i=1; i<=j; i++){ 

(18)   BEH=BE; BE[3]=ITC((CTI(BE[3])+1)%26); 

(19)   if(BEH[3]==tpR) BE[2]=ITC((CTI(BE[2])+1)%26); 

(20)   if(BEH[2]==tpM){ 

(21)     BE[1]=ITC((CTI(BE[1])+1)%26); 

(22)     BE[2]=ITC((CTI(BE[2])+1)%26);} 

(23)   for(int i=1; i<=3; i++) RT[i]=(26+CTI(BE[i])-CTI(PI[i]))%26; 

(24)   s1+=codeLetter(s[i],RT[1],RT[2],RT[3]);} 

(25) return s1;} 
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5 Computational complexity 
The total running time of the findRS() method (by using a computer with an AMD 
Turion 64 X2 processor clocked at 1.9GHz) is about 6 seconds. To guess plug 
connections we call the PlugBoard() method for each of the listed (in the 
catalogue() algorithm) settings RDS. It produces a result immediately (in a fraction 
of a second). The cryptologists needed 1-2 hours to find ring settings (cf. [6]). 

6 The implications of the work and conclusions 
We can solve the Enigma cipher (by analyzing and completing historical information) 
because trained Polish and (later) British cryptologists did it earlier. The Enigma cipher 
is not trivial and its breaking on the basis of eavesdropped messages is practically 
impossible even nowadays. The three cryptologists used the help of spies, mistakes 
of operators and numerous favorable coincidences. The reader can find other decryption 
algorithms of the Enigma cipher in [1] (Zygalski's sheets method) and [3] 
(the cryptologic bomb method and the plugboard algorithm). All these methods are 
interesting exercises and encourage the study of current problems of cryptology. 
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Summary 
We study the problem of decoding secret messages encrypted by the German Army 
with the M3 Enigma machine. We focus on the algorithmization and programming 
of this problem. In part I of this paper we proposed a reconstruction and completion 
of the catalogue method. Here we complete this method with two author's algorithms, 
i.e. the plugboard algorithm and the ring settings algorithm. On the basis of these three 
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methods we can obtain the complete daily key and any message settings, as well as read 
each message eavesdropped before September 15, 1938. We enclose an implementation 
of presented algorithms in Cpp language. 

Keywords: Enigma M3, Rejewski, characteristic of a given day 

Kryptoanaliza Szyfru Enigmy. 
Metoda Katalogu. Część II 

Streszczenie 
Tematem pracy jest kryptoanaliza szyfru niemieckiej Enigmy M3, używanej 
do kodowania tajnych depesz przez siły zbrojne oraz inne służby państwowe Niemiec 
podczas II wojny światowej. W części I zaproponowaliśmy algorytm będący 
rekonstrukcją metody katalogu. Tu uzupełniamy metodę katalogu o dwa brakujące 
algorytmy służące do wyznaczania odpowiednio połączeń łącznicy wtyczkowej 
i ustawień pierścieni. Wykonanie trzech wspomnianych algorytmów pozwala na 
odtworzenie pełnego dziennego klucza oraz klucza dowolnej depeszy. Dzięki temu 
możemy przeczytać dowolną depeszę przechwyconą przed 15 września 1938 r. 
Dodatkowo załączamy implementację przedstawionych algorytmów w języku Cpp. 

Słowa kluczowe: Enigma M3, Rejewski, charakterystyka dnia 
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