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On Some Dynamical Effects in Discrete  
and Continuous Columns  

with Supports Subjected to Circulatory Load 

1 Introduction 

The analysis of beams and columns under compressive axial forces has a long history, 

cf. [1, 2]. In the recent years the effect of non-conservative forces has found a lot 

of attention. In particular, the cases of additional lateral forces depending on the 

transverse displacement have been widely discussed. The well known examples are 

Beck’s and Reut’s columns shown in Fig.1 [2]. In Beck’s case, the lateral force Q at the 

tip of the column is negative linearly dependent on the angle of inclination at the end 

point. Such a force belongs to the category of follower forces, and particularly is 

a circulatory load (see [2] for more references). 

 

 

 

 

 

 

 

 

 
Fig. 1. Beck’s and Reut’s columns 

                                               
 
Fig. 2. Beck’s column with an elastic support              
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The additional spring at the tip of column enables one to transfer to a column simply 

supported on both ends which is a divergence-type structure. The supporting spring can 

stabilize or destabilize the column, what means that the critical follower force can be 

lower or grater than in the critical force of original Reut’s, Beck’s and Ziegler’s 

problems [3], [4]. 

1.1   Continuous formulation 

The appearance of a force or moment directed back towards the undeformed 

configuration leads to a considerable increase of the critical force, i.e. the value of the 

axial load, for which for the first time certain modes of harmonic oscillations have 

a growing amplitude. However, there is a new phenomenon: while in the case of a pure 

axial loading, so-called dead loading, the displacement at each point of the column 

grows monotonously (divergence), Beck’s column loses stability in an oscillatory way. 

In the post-critical zone the displacement at each point is a product of an exponential 

and a sine time functions. This behaviour is called flatter, as opposed to the classical 

divergent loss of stability for Euler’s column. 

There have been many approaches to increasing the maximum critical force [2]. There 

are various kinds of lateral supports, specific material properties, e.g. viscous internal 

damping, use of piezo-electric effects, and changes of the column geometry. In all 

cases, the overall cost of the column, including material, assembly and maintenance, 

have to be taken into account [2]. One may either try to maximize the carrying capacity 

under cost limitations or reduce cost on a lower boundary of the critical force. 

The classic case is a redistribution of a given total mass identified with the column cost, 

so that the critical force as an objective becomes a maximum. In dimensionless 

quantities, the classical Euler’s column has a very low critical force of about 2.46 

in comparison with the critical follower force of Beck’s column reaching the value of 

20.05. While the optimum found so far is about 140 (see ref. [5]). The maximal critical 

force of uniform Beck’s column with the support located at the top (Fig.1) is almost two 

times higher as critical force of the uniform Beck’s column. For the case of stiffer 

support Beck’s column losses its stability by divergence, then becomes stable again 

in a small range of force and finally losses stability by flutter. 

The above numbers show the high potential of research towards column shape 

and supports stiffness optimisation. However, there are some limitations to 

the approaches studied so far. First, a basic element of the solution is the discussion 

of characteristic equations for linear models. The discretization of the continuous beam 

(column) is difficult, because it not always leads to a satisfactory approximate solution. 

To explain this problem let us compare the Ziegler and Beck models of a column 

elastically supported on the top. 

1.2   Discrete formulation 

The classic Ziegler column (left-hand side of Fig. 3) is supplemented with an additional 

elastictic support at the top of the column as shown in the right-hand-side of Fig. 3. 

The equations of motion are given in ref. [3]. 
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Fig. 3. Ziegler column and column with an elastic support  

The typical shape of characteristic curves on the (P,ω) plane for various values  

of the support stiffness K is shown in Fig. 8 according to ref. [3]. 

2 Modelling of Beck’s column 

The equation of motion for the column modelled as the Bernoulli-Euler beam with a 

constant value of axial load P takes the form: 
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where the notations are: EI – column bending stiffness, y – transverse displacement, ρ, 

A - column mass density and cross-section area, respectively and t,x – time and space 

variables. 

The boundary conditions for the cantilever column with the follower force at the top 

tangential to the deflected axis of the column are as follows: 
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In that case the exact form of harmonic solutions can be expected in the form: 

tiexwtxy ω)(),( = ,                                              (3) 

where w  and ω  are eigen-form and frequency, respectively. 

The characteristic equation – it determines suitable values of ω , cf. ref. [2] – becomes 

in the case of a homogeneous column: 

0224 =−+ APkEIk ρω .                                            (4) 

The general solution for )(xw  for constant mass and stiffness distributions along 

the column has the well known form: 

m2,l2 

m1,l1 
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xkAxkAxkAxkAxw 24231211 cossincoshsinh)( +++= ,               (5) 
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Introducing the following notations: M - bending moment, Q - shear force, ϕ - angle 

of cross-section rotation, we can define the beam segment state vector Gias follows: 

[ ] [ ]TT
i wEIwEIwwQMw ′′′′′′== ,,,,,,ϕG .                             (7) 

For the generalized beam segment (segment of beam or support, [2]) the elementary 

transfer matrix Ti provides a relation between the states vectors for its both boundaries. 

For a single we have: 

00
1 iii GTG =+  .                                               (8) 

In the case of a uniform column supported by the elastic support of stiffness K  
at the position xi the partial matrix takes the form:  
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The successive left-hand-side multiplication of partial matrices results in the global 

transfer matrix T for the complete structure in the general case: 

0
121

00
1 ... nnnnn GTTTTGTG −+ ==  .                              (10) 

Fulfilling boundary conditions (2) yields the following characteristic equation: 

0),(
4443

3433
=Φ= ωP

TT

TT
,                                    (11) 

where Tij are elements of matrix T. 

The classic Beck-Reut’s problem was formulated and solved more than 60 years ago 

and the characteristic curves are shown in Fig. 4a acording to ref. [6]. However, 

there was a lack of explanation of variation of natural frequency versus external load 

for various kinds of column. In ref. [6] one can find a classification of columns into 

three different types of structures: flutter type, divergence type and divergence-pseudo-

flutter type which are shown in Fig. 4 a,b and c, respectively. 
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Fig. 4. Characterestic curves for various kinds of structure: (a) flutter type, 

(b) divergence type, (c) divergence-pseudo-flutter type 

The third type of the characteristic curves shown in Fig. 4c constitutes the first step 

for understanding the relation between eigen-frequencies and eigen-modes of the 

system. However, the first type of eigen-modes configuration should be corrected. 

The same concerns many other papers like [1] and [7]. It was difficult to find the 

boundary between the first and second modes. One can state that at the critical value 

of the load double frequency occurs for which the corresponding eigen-form is the 

same. It means that the transfer point from the first to the second eigen-form ought to be 

below the critical value of load. It is interesting that in the case of the column elastically 

supported on the top all characteristic curves Φ(P,ω)=0 intersect each other in one 

point. This point in the case of a uniform continuous column has coordinates P=16 and 

ω =7, as shown in Fig. 5. A similar singular point exists in case of the Ziegler column 

supported on the top (for chosen set of parameters at the value of force equal to almost 

20), see Fig. 7. 

3 Numerical analysis of Beck’s column 

The typical shape of characteristic curves on the (P,ω) plane for various values 

of support stiffness K is shown in Fig. 5. 

 

 

Fig. 5. Shape of characteristic curves for chosen values of support stiffness crossing 
singular point P=λ*=16 



 

 

Roman BOGACZ, Włodzimierz KURNIK 

176 

One can see that for the nondimensional force P<16 we have classic configuration 

of characteristic curves (the first eigen-frequency corresponds to the first eigenform). 

The situation changes for the force P>16. The double knot existing at x=0 for P=16 

splits into two knots. One of them shifts along the x axis, see Fig. 6. 

  

 

 

 

 

 

 

 
Fig. 6. Shapes of eigenfunctions at P=λ*=0 and in the neighborhood of singular 

value of force P=λ*=16  

This is the way of transition of the first eigen-mode into the second one. For P>16 

the first eigen-form does not exist and we have the second eigen-form only (with two 

knots). Thus, there is a difference between determination of modes in Figs.4a and 5, 

as explained above. 

4 Elastically supported Ziegler column 

Consider two rigid rods of mass and length m1, m2 and l1, l2, respectively, linked by an 

elastic joint and supported and loaded by a follower force, as shown in the left-hand 

side of Fig. 3. With two linear angular springs of stiffnesses k1 and k2 and absence 

of gravity and damping the rods constitute a two-degrees-of-freedom elastic system 

known as Ziegler’s column. It is well known that the static equilibrium of the straight-

line column loses stability at a certain value of the compressive follower force 

and periodic flutter vibration occurs if an existing nonlinearity allows to close a limit 

cycle. In a classic stability analysis the amplitudes of limit cycles are not studied 

although the near-critical vibrations are also interesting especially from the point 

of view of possible soft or hard self-excitation (see [8] where a nonlinear rotating 

Leipholz column with active stabilization is studied). The mathematical tool 

for the near-critical column behaviour one can find in ref. [9]. 

The original Ziegler’s column is generalized by including an additional spring 

of stiffness K  at the top, as shown in the right-hand side of Fig. 3. The nonlinear 

dynamic equations of motion are derived as the Lagrange equations for the generalized 

coordinates being rotation angles 21,ϕϕ  from the straight vertical line of the column. 

Full nonlinear equations of motion are as follows [3]: 
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Equations (12) can be transformed into a single linearized matrix equation of the first 

order 
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All the dynamic properties of the considered system including stability 

of the equilibrium, free vibrations of the stable column and transient motions in cases 

of instability are determined by the eigen-values and eigen-vectors of matrix A . 
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The frequency versus value of the follower force F for the six chosen values of support 

stiffness [N/m] are shown in Fig. 7 for an exemplary set of data in the dimensional 

form. The system parameters and the set support stiffness is as follows: m1=m2=3.0 

Ns
2
/m, l1=l2=1 m, k1=k2=9 Nm/rad, ; 2.0; 3.24; 3.7; 3,75; 5.0. In this case we can 

also see that for tangential force almost equal to F=20 N there exists a similar singular 

point as for the case of Beck-Reut’s column as well as for continuous column subjected 

to conservative load shown in Fig. 4c. The singular point is also connected 

with a change of eigen-forms and is typical for pure second eigen-form of the Ziegler 

column. This particular case is shown in Fig. 8. 

 

Fig. 7. Scheme  of the supported Ziegler column and eigenfrequencies versus follower 
force for six values of support stiffness = 0; 2.0; 3.24; 3.7; 3,75; 5.0    

 

Fig. 8. The Ziegler column with pure second eigenform     

5 Conclusions 
The present generalization of the classic Beck’s column [10]-[12] and Ziegler’s column 

[3] by introducing an additional elastic suport enlights a rich variety of possible eigen-

frequency configurations and eigen-value behavior corresponding to important 

configuration of the force-frequency characteristics affecting stability boundary and 
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eigen-forms of investigated columns. The additional elastic support at the top of column 

enables one to transit to a column simply supported on both ends which is a second 

eigenform of the Ziegler column. The “stabilizing” spring can destabilize the column 

what means that the critical tangential follower force can be lower than that of the 

classic Ziegler’s problem. 

The generalized Beck and Ziegler columns are idealized elastic models of a variety of 

more realistic continuous and discrete systems and constitute a theoretical “skeleton” 

enlighting their basic properties and dynamic phenomena related to stability and eigen-

forms of columns. The results concerning the eigen-forms of columns explain also some 

phenomena of experimental investigations obtained in referreces [6] and [13]. 
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Summary 

The paper is devoted to the analysis of influene of configuration of charakteristic curves 

on the eigen-forms and stability of continuous and discrete columns subjected 

to the circulatory load. Special attention is paid to Beck’s and Ziegler’s columns 

elastically supported on the top of column. It is pointed out that in both cases there 

exsist some singular points where transition from the first to the second eigen-form 

occurs. 

Keywords: circulatory load, stability, eigen-forms 

O pewnych efektach dynamicznych 
dyskretnych i ciągłych kolumn z podporami 

poddanych obciążeniu cyrkulacyjnemu 

Streszczenie 

Pracę poświęcono analizie wpływu krzywych charakterystycznych na postaci własne 

i stabilność rozważanych kolumn ciągłych i dyskretnych poddanych obciążeniu 

cyrkulacyjnemu. Szczególną uwagę zwrócono na kolumny Becka i Zieglera sprężyście 

podpartych na końcach. Wykazano istnienie szczególnych punktów osobliwych 

na płaszczyźnie siła-częstość, w których następuje zmiana z pierwszej na drugą postać 
własną. 

Słowa kluczowe: obciążenie cyrkulujące, stateczność, postaci własne 

 

 

 

 


